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V

Preface

These notes cover eight lectures on Coxeter groups, given at a MasterMath
Course in Utrecht, Fall 2007. Each chapter corresponds to a lecture. The
idea was to show some general group-theoretical techniques and, at the same
time, the strength of these techniques in the particular case of Coxeter groups.
Word rewriting, linear representations, and permutation representations are
the main examples of the techniques I had in mind. The first of these tech-
niques is exemplified by the beatiful proof of the automaticity of Coxeter
groups, the gist of which appears in Chapter 7. The fact that Coxeter groups
are linear (but very little representation theory) can be found in Chapter 3,
where the famous reflection representation is treated. The main example of
permutation representations for Coxeter groups uses the reflection represen-
tation and is concerned with root systems, in Chapter 4, a key component of
the automaticity result. The role of Coxeter groups in other parts of mathe-
matics comes to play in Chapters 6 on Weyl groups and 8 on buildings.

It was a pleasure working with the class. I am very grateful to Jos in’t
panhuis for his help with the exercises and his careful reading of the text.
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1. Introduction

In this lecture we discuss how groups are represented and why Coxeter groups
stand out among all groups. It is the introduction to a series of seven lectures
on Coxeter groups, with an eye towards general group theory.

1.1 Representing a group

How do you describe an abstract group G in such a way that you can com-
pute with it? In an abstract form, it is a set, often also denoted by G, a
distinguished element 1 ∈ G and an associative map G × G → G, called
multiplication, such that 1 is the identity and each element x has an inverse
with respect to 1. We almost always write xy for the product of x and y in
G. The inverse of an element x ∈ G is unique and often denoted x−1, so the
inverse is a map G → G. It is often useful to have the inverse map explicitly
given.

The most straightforward approach to the question how to describe a
group is the multiplication table. See Table 1.1 for an example in the case
where the group is the direct product of two (cyclic) groups of order 2, known
as Klein’s Four group.

· 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Table 1.1. The multiplication table of Klein’s Four group

But, if you go beyond small examples, this answer is not very satisfactory.
For an infinite group, the data is infinite. Typically, a solution would be to give
the set of elements, the multiplication, and the inverse map by algorithms.
For a finite group, the amount of data needed for the multiplication table
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is in the order of |G|3, which puts a group like the Monster group M (see
Theorem 1.7.1(v) for the significance of this group), of size

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 808017424794512875886459904961710757005754368000000000

≈ 8 · 1053,

outside the scope of our planet, as the number of particles (say atoms) on
earth is estimated to be smaller.

In this course, we will discuss three ways of describing groups more effi-
ciently:

• as a presentation, by means of generators and relations
• as a permutation group, by means of generating permutations (for finite

groups)
• as a linear group, by means of generating matrices

1.2 Finitely presented groups

An easy way to represent a group is by generators and relations. It has major
disadvantages because questions like deciding whether two representatives
stand for the same group element are hard, even impossible to answer in
general. In order to define a presentation, we need the notion of a free group,
which we will deal with more carefully in Lecture 2. For the time being we
will work with the free group F(A) on an alphabet as follows. Consider the
alphabet A ∪A−1, where A−1 is the set of symbols a−1 disjoint from A, one
for each a ∈ A. As a set, F(A) consists of all words in A ∪ A−1 without
occurrences of the kind aa−1 or a−1a for a ∈ A. Such words will be called
reduced. Multiplication on F(A) is given by concatenation followed by removal
of all forbidden occurrences so as to obtain a reduced word, and in which the
empty word 1 is the identity element. The fact that F(A) is a group requires a
proof. This proof will be postponed till Lecture 2; it hinges on the uniqueness
of the reduced word for a given element of F(A). Elements of F(A) are called
words (on A).

Definition 1.2.1 A group presentation 〈A |R〉 is made up of a set A of
generators and a set R of relations. Here a relation is an expression of the
form w1 = w2, where w1 and w2 are elements of the free group F(A). The
group 〈A |R〉 is then defined as the quotient group of the free group F(A)
on the generating symbols from A by the normal subgroup generated by all
w1w

−1
2 for each expression w1 = w2 occurring in R.

A group presentation 〈A |R〉 is said to be finite if both A and R are finite.
It is said to be a presentation of G (or G is said to have presentation 〈A |R〉)
if G is a group isomorphic to 〈A |R〉. The group is called finitely presented if
it has a finite presentation.
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Every group has a presentation. Not every group has a finite presentation;
see Exercise 1.8.3.

Example 1.2.2 (Cyclic groups) A presentation for the cyclic group of in-
finite order, that is, the free group on one generator, is

〈{a} | {}〉.

It is a presentation of the additive group Z+ of the integers.
Of course, no group has a unique presentation. Another presentation of

the cyclic group of infinite order is

〈{a, b} | {b = 1}〉.

Adding the relation am = 1, we find the cyclic group of order m:

〈{a} | {am = 1}〉.

It is a presentation of the additive group (Z/mZ)+ of the integers modulo m.

Example 1.2.3 (Dihedral groups) Let m ∈ N. By Dih2m we denote the
group with presentation

〈{a, b} | {a2 = 1, b2 = 1, (ab)m = 1}〉.

Using the braces to indicate sets becomes tiresome and is often deleted; so,
to the above way of writing the group presentation, we prefer

〈a, b | a2 = 1, b2 = 1, (ab)m = 1〉.

Set c = ab. (Note the ambiguity: the right hand side represents an element
of F(A), but we often interpret it as an element of Dih2m. To avoid ambiguity,
we often specify in which group the identity is supposed to hold.) We claim
that, as a set

Dih2m = {aicj | {i ∈ {0, 1}, j ∈ {0, 1, . . . ,m− 1}}.

For, each a following a power of c can be commuted to the front:

cka = (ab)ka = a(ba)k = a(b−1a−1)k = a((ab)−1)k = ac−k = acm−k,

so each element is of the form aicj for some i, j ∈ N. Now, keeping into
account that a2 = 1 and cm = 1, we see that there is no harm in restricting
the values of i and j as in the claim.

The claim establishes that Dih2m is a group of order at most 2m. Is it
of order precisely 2m? And if so, how to prove it? The answer needs the
following basic result and is given in Example 1.2.5.
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Theorem 1.2.4 Suppose φ : A → G is a map from the alphabet A to
the group G. Then φ can be uniquely extended to a group homomorphism
φ : F(A) → G. Let 〈A |R〉 be a group presentation such that φ(w1) = φ(w2)
is satisfied for each expression w1 = w2 in R. Then φ induces to a homomor-
phism of groups 〈A |R〉 → G.

Proof. Let φ : A → G be as stated. Put φ(a−1) = φ(a)−1 for each a ∈ A. If
v ∈ F(A), then v is a reduced word a1a2 · · · an for certain ai ∈ A ∪A−1, and
we set

φ(v) = φ(a1)φ(a2) · · ·φ(an).

It is straightforward from the construction of F(A) that φ is a homomor-
phism of groups. For, if b1b2 · · · bm is a reduced word for w ∈ F(A), then
vw = a1 · · · an−rbr+1 · · · bm, where an−k and bk+1 are each other’s inverses
for k = 0, . . . , r − 1, and r is maximal with this property. Then

φ(vw)

= φ(a1) · · ·φ(an−r)φ(br+1) · · ·φ(bm)

= φ(a1) · · ·φ(an−r) (φ(an+1−r) · · ·φ(an)φ(b1) · · ·φ(br)) φ(br+1) · · ·φ(bm)

= (φ(a1) · · ·φ(an−r)φ(an+1−r) · · ·φ(an)) (φ(b1) · · ·φ(br)φ(br+1) · · ·φ(bm))

= φ(a1 · · ·an)φ(b1 · · · · · · bm)

= φ(v)φ(w).

By the assumed behaviour of φ on the expressions from R, the elements
w1w

−1
2 belong to Kerφ. But Kerφ is a normal subgroup and so contains

the normal subgroup N of F(A) generated by all w1w
−1
2 for w1 = w2

an expression in R. By the First Isomorphism Theorem, this means that
φ factors through F(A)/N ; in other words, φ is the composition φ ◦ π
of a homomorphism φ : F(A)/N → G and the natural quotient map
F(A) → F(A)/N . Now φ is the required homomorphism 〈A |R〉 → G. tu

Example 1.2.5 (Dihedral group presentations) Let m ∈ N, m ≥ 2. By
Symm we denote the group consisting of all permutations of {1, . . . ,m}, a set
which we denote by [m]. The map τm : [m] → [m] sending i ∈ [m] to m+1− i
is an involution, that is, an element of order 2, in Symm. In the subgroup of
Symm generated by τm−1 and τm, denoted 〈τm−1, τm〉, we have the following
relations.

τ2
m = 1, τ2

m−1 = 1, (τmτm−1)
m = 1.

The first two equations reflect that τm and τm−1 are involutions, and the
third relations follows from τmτm−1 = (1, 2, . . . ,m).

In other words, τm and τm−1 satisfy the relations for a and b as given in
Example 1.2.3. By Theorem 1.2.4, there is a homomorphism of groups

φ : Dih2m → 〈τm, τm−1〉
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determined by φ(a) = τm and φ(b) = τm−1. As τm and τm−1 are images
of φ, the whole group D = 〈τm, τm−1〉 is in the image of Dih2m under φ,
so |Dih2m| ≥ |D|. But D contains the cycle τmτm−1 of order m, and the
involution τm outside 〈τmτm−1〉. Therefore, |D| ≥ 2m, so |Dih2m| ≥ 2m. But
we already know |Dih2m| ≤ 2m; see Example 1.2.3. The conclusion is that
both Dih2m and D have order 2m and that φ is an isomorphism. This is an
efficient presentation for the group of permutations 〈τm, τm−1〉.

Remark 1.2.6 According to the Atlas of Finite Simple Groups, [9], a pre-
sentation for the Monster group M is

〈a, b, u | a2 = 1, b3 = 1, (ab)29 = 1, u50 = 1,

(au25)5 = 1, (ab2(b2a)5b(ab)5b)34 = 1;u = (ab)4(abb)2〉.

As the last relation expresses u as a word in the generators a and b, it follows
from this presentation that M is a quotient of F({a, b}), or, equivalently (by
Theorem 1.2.4), generated by two elements. Being non-Abelian, M cannot be
generated by a single element.

On the one hand, this presentation is indeed efficient in the sense that it
needs little storage space on a computer. On the other hand, it is not clear
how it can help to convince you that we are dealing with a finite simple group
of the order indicated in Section 1.1. Even for the trivial group there are many
complicated presentations; see Exercise 1.8.2 for a moderate example.

We present another application of Theorem 1.2.4.

Proposition 1.2.7 Let Sn be the alphabet {s1, . . . , sn} and consider the set
Tn of relations

s2i = 1
sisj = sjsi if |i− j| > 1

sisjsi = sjsisj if |i− j| = 1

Then the map Sn → Symn+1 given by si 7→ (i, i+1) extends to a presentation
of Symn+1 by 〈Sn |Tn〉.

Proof. Consider the map φ : Sn → Symn+1 given by φ(si) = (i, i + 1) for
i ∈ [n]. It is not hard to verify that the relations listed in the statement hold
for the images of si under φ in Symn+1.

By Theorem 1.2.4 φ determines a group homomorphism φ : 〈Sn |Tn〉 →
Symn+1. It is easy to verify that Symn+1 is generated by φ(Sn). So φ is
surjective. Now |Symn+1| = (n+1)!, so, for a proof that φ is an isomorphism,
it suffices to show |〈Sn |Tn〉| ≤ (n+1)! If n = 1, the group 〈S1 |T1〉 = 〈s1 | s21 =
1〉 is cyclic of order 2, as required. We proceed by induction on n.

Suppose n > 1. We claim that each element x of 〈Sn |Tn〉 can be rep-
resented by a word sksk+1 · · · snsn+1w with w ∈ 〈s1, . . . , sn〉. Once this is
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established, we note that w lies in a quotient of the group with presentation
〈Sn−1 |Tn−1〉; so, by the induction hypothesis, there are most n! different
choices for w. Left of w the choices for x are limited by k ∈ [n + 1]. Conse-
quently, there are at most (n+ 1) · n! = (n+ 1)! words representing distinct
elements of 〈Sn |Tn〉, so |〈Sn |Tn〉| ≤ (n+ 1)!, as required.

It remains to prove the claim. Let x ∈ 〈Sn |Tn〉. Consider a word in F(Sn)
representing x. If sn+1 does not occur, there is nothing to show. Suppose
therefore that x = vsksk+1 · · · snsn+1w is an expression of minimal length
for x with w free of sn+1 and k and the length of v as small as possible (in
this order). If v is the empty word, we are done. Otherwise we can write
v = usj for some j ∈ [n]. If j < k − 1, then

vsk · · · snw = usjsk · · · snw = usk · · · snsjw,

with sjw ∈ 〈s1, . . . , sn〉 contradicting the minimality of v.
If j = k, we can reduce the length of the word for x by removing the

double occurrence of sk (and obtain the word uv for x), as s2k = 1 belongs to
Sn. This contradicts the minimality of the length of our representative word.

If j = k + 1, we have sk+1sksk+1 · · · snsn+1 = sksk+1sksk+2 · · · snsn+1 =
sksk+1sk+2 · · · snsn+1sk and so x is represented by usksk+1sk+2 · · · snsn+1skw,
with skw ∈ 〈s1, . . . , sn〉, again contradicting the minimality of v.

Suppose therefore, j > k + 1. Then

sjsksk+1 · · · snsn+1 = sksk+1 · · · sjsj−1sjsj+1 · · · snsn+1

= sksk+1 · · · sj−1sjsj−1sj+1 · · · snsn+1

= sksk+1 · · · sj−1sjsj+1 · · · snsn+1sj−1

= sksk+1 · · · snsn+1sj−1

and we can reason as in the previous case. Thus, v must be the empty
word; this proves the claim. tu

Example 1.2.8 The group SL(Z2) consists of all 2×2 matrices with integer
entries and determinant 1. It is generated by the following two interesting
elements (proving this is Exercise 1.8.6).

(
0 −1
1 0

)
,

(
0 −1
1 1

)
.

The center of this group consists of the scalar multiplications by 1 and −1,
and so has order 2. The quotient group of SL(Z2) by this center is de-
noted PSL(Z2). Denote by A and B the images of the above two matrices in
PSL(Z2). Obviously, A2 = 1 and B3 = 1, so there is a group homomorphism

〈a, b | a2 = 1, b3 = 1〉 → PSL(Z2)

sending a to A and b to B. Surprisingly, this homomorphism is an isomor-
phism. The proof of this statement will not be given here.
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1.3 Permutation groups

The group of all permutations of a setX is denoted by Sym(X) and called the
symmetric group on X . We have already encounterd Symn, which is Sym([n])
in the current notation. If X is infinite, we can still speak of Sym(X) as the
group of all bijections ofX , but things are more subtle, for instance because of
the existence of the proper normal subgroup FSym(X) of Sym(X) consisting
of all finitary permutations, that is, all permutations moving only a finite
number of elements of X .

Definition 1.3.1 Let G be a group and X a set. A permutation representa-
tion of G on X is a group homomorphism α : G→ Sym(X). In this case, X
is referred to as a G-set. Such a permutation representation is called faithful
if α is injective. In this case, G or rather its isomorphic image α(G) is called
a permutation group. The size of X is called the degree of the representation.

Let x ∈ X . The set {α(g)x | g ∈ G} is called the G-orbit, notation Gx,
of x in X . The permutation representation is called transitive if there is only
one G-orbit in X . The stabilizer of x in G, notation Gx, is the subgroup
{g ∈ G | α(g)x = x} of G.

The following theorem shows how to construct permutation representa-
tions on the collection of cosets gH (g ∈ G) of H in G.

Theorem 1.3.2 (Cayley’s Theorem) If G is a group and H is a subgroup
of G, then left multiplication, considered as the map LH : G → Sym(G/H)
given by LH(g) = (kH 7→ gkH), is an homomorphism of groups G →
Sym(G/H). Its kernel is the biggest normal subgroup of G contained in H,
that is,

⋂
g∈G gHg

−1.

Proof. This is Exercise 1.8.7. tu
As a consequence, every finite group G can be viewed as a group of per-

mutations. For, take G to be any finite group and H = 1, the trivial group
(again, we leave out braces and write 1 instead of {1}). Then, as sets G and
G/1 can be identified and the kernel of L1 is the trivial subgroup of G. By the
First Isomorphism Theorem, the image of G under L1 in Sym(G) is isomor-
phic to G, so we have an embedding (that is, an injective homomorphism) of
G in Sym(G).

For the cyclic group of prime order p, there is no smaller degree than p
for a faithful permutation representation. For, the group has no nontrivial
proper subgroups. See Exercise 1.8.8.

Remark 1.3.3 In terms of size, the embedding G → Sym(G) is not very
impressive: the degree is as large as the group itself. At the same time, we see
that, for a simple group G, we can take H to be any proper subgroup. For the
Monster group M, the best choice is the centralizer of a particular involution,
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a subgroup H related to the Baby Monster, another group appearing in
Theorem 1.7.1, for which the size of M/H (known as the index of H in M)
is 97, 239, 461, 142, 009, 186, 000 ≈ 9.7 · 1019. This number is still too big for
treatment by computer.

For computational purposes, permutation groups are given by means of
generating permutations. If B is a set of permutations on X , then 〈B〉 de-
notes the subgroup of Sym(X) generated by B; it can be constructed by
starting from B, adding 1, and successively adding all products and inverses
of elements already obtained.

1.4 Linear groups

The general linear group on a vector space V , denoted GL(V ), will be intro-
duced in Exercise 1.8.1. If V is of dimension n over the field F, this group can
be explicitly described as the set of all square matrices of size n and nonzero
determinant with entries in F.

Definition 1.4.1 A linear representation of a group G is a group homomor-
phism G → GL(V ), where V is a vector space. Here GL(V ) is the group of
all invertible linear transformations from V to V . Our interest is in finite-
dimensional vector spaces. If V is known, we also speak of a linear representa-
tion on V . If we want to specify the field F underlying V , we talk about linear
representations over F. In case F = R or C, we speak of real and complex
representations, respectively. The dimension dimV of V is called the degree
of the representation.

Example 1.4.2 Consider the following real 2 × 2-matrices.

A =

(
0 1

1 0

)
and B =

(
sin 2π

m cos 2π
m

cos 2π
m − sin 2π

m

)

These matrices satisfy the following relations:

A2 = 1, B2 = 1, (AB)m = 1.

In particular, A and B are invertible linear transformations and generate the
subgroup 〈A,B〉 of GL(R2), the group of all real invertible 2×2-matrices. By
Theorem 1.2.4, there is a homomorphism Dih2m → 〈A,B〉 sending a to A and
b to B. By an argument similar to the one for 〈τn, τn−1〉 in Example 1.2.5,
we can argue that 〈A,B〉 has order at least 2m, and derive from this that
Dih2m is isomorphic to 〈A,B〉. In particular, Dih2m can also be represented
as a group of invertible real matrices.
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Remark 1.4.3 Every finite group can be represented as a linear group. This
follows from the results in Section 1.5. Another proof follows from the con-
struction of the group algebra; see Exercise 1.8.11. The minimal degree of a
faithful real representation of the Monster is 196, 883.

1.5 Transitions between representations

If G is a finite group given by a set of generating permutations or matrices,
its multiplication table can be determined (at least, in principle), and so a
presentation by means of generators would be 〈G |T 〉, where T consists of all
equations gh = k for g, h, k ∈ G: the multiplication table.

Thus there are effective, albeit very inefficient, methods of finding a pre-
sentation by generators and relations when given a permutation or linear
representation for a given finite group G.

In this section, we discuss the other transitions between the three ways
of representing a group. These are visualized in the following triangle.

Generators and Relations
↙ ↘

Permutation ↔ Matrix

By Theorem 1.2.4 Let G = 〈A |R〉 be given by means of generators and
relations. Then there are several techniques for trying to build up the per-
mutation representation of G on the cosets in G of a subgroup H specified
by generators. In general, there is very little we can say about H and there
is no guarantee that

⋂
g∈G gHg

−1 is trivial, so it may well be that the homo-
morphism G→ Sym(G/H) is not injective; see Cayley’s Theorem 1.3.2. But,
even more seriously, there is no algorithm that allows us to determine even if
G is trivial on the basis of A and R alone. The only positive aspect is that,
if we know G is finite, it will take a finite number of computational steps to
determine the image of G in Sym(G/H). The process of determining G/H is
called coset enumeration. It has been discussed in the MasterMath lectures
on Computer Algebra. Here we only give a very simple example.

Example 1.5.1 Let m ∈ N, m > 1. Consider the dihedral group Dih2m

introduced in Example 1.2.3, with presentation

〈a, b | a2 = 1, b2 = 1, (ab)m = 1〉.

Let H be the subgroup of Dih2m generated by b. So H has order 1 or 2. Coset
enumeration starts with the coset, labelled 1, corresponding to H . It is an
attempt to construct the Schreier graph Σ(Dih2m, H,A), whose vertex set is
Dih2m/H and in which the ordered pair (gH, kH) of cosets is an edge labelled
x for x ∈ A with xg ∈ kH . So, in our example, (H, aH) is an edge labeled
a, so the vertex aH is labelled 2 and our Schreier graph under construction
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is the single ordered edge (1, 2). To be precise, we have no guarantee as yet
that the vertices 1 and 2 coincide; in other words, at some point we need
to exclude a ∈ H . But the idea of coset enumeration is to proceed building
the graph, while checking the relations regularly and collapsing the graph if
vertices will coincide as a result. An easy instance is bH = H , leading to the
loop (1, 1) with label b. Another easy instance is a2H , which should collapse
with H as a2 = 1. In fact, as a and b are involutions, the Schreier graph
at hand may be viewed as having undirected edges: if (gH, kH) is an edge
labelled x, then so is (kH, gH).

Next, consider neighbors of 2. Only left multiplication by b might give a
new coset 3 = b2 = ba1. If m = 2, then ba1 = ab1 = a1, and the Schreier
graph completes on the vertex set [2].

Suppose m = 3. Proceed with a again to get 4 = aba1. Now aba1 =
bab1 = ba1 = 3, so the Schreier graph completes on the vertex set [3].

In general, the will find m nodes, labelled 1, 2, . . . ,m with ai = i+ 1 if i
is odd, bi = i + 1 if i is even. At the end, for m even, bm = (ba)m/21 =
(ab)m/21 = (ab)m/2−1a1 = m and, for m odd, am = a(ba)(m−1)/21 =
(ab)(m+1)/21 = (ba)(m−1)/21 = m. This completes a graph as depicted in
Figure 1.1.

b

b

b

a

1 2 3 4

a b a b

aaba

1 2 3 4 −1m m

mm −1

Fig. 1.1. The Schreier graph Σ(Dih2m, 〈b〉, {a, b}) for m even and m odd

Now read off the permutations representing the actions of a and b from
the Schreier graph. For m even:

a 7→ (1, 2)(3, 4) · · · (m− 1,m)

b 7→ (2, 3)(4, 5) · · · (m− 2,m− 1)

and for m odd:

a 7→ (1, 2)(3, 4) · · · (m− 2,m− 1)

b 7→ (2, 3)(4, 5) · · · (m− 1,m)

These permutations are easily verified to satisfy the defining relations of
Dih2m and hence, by Theorem 1.2.4, we have a group homomorphism G →
Sym([m]). The image of H under this homomorphism is of order 2 and so H
itself has that order. Finally, the order of Dih2m is the number m of cosets of



1.5 Transitions between representations 11

H in G multiplied by the order of H , which is 2. The result, |Dih2m| = 2m,
has also been established in Example 1.2.5.

Each finite group G is isomorphic to a real linear group, that is, a group of
real invertible matrices of finite dimension. To see this, use Cayley’s Theorem
1.3.2. It enables us to assume that G is a subgroup of Sym(X). Now take the
real vector space V = RX of all real functions X → R. Observe that V has
dimension |X |. For g ∈ G and f ∈ V , write gf for the real function X → R

given by
(gf)x = f(g−1x) (x ∈ X),

and set ρg = (f 7→ gf).

Proposition 1.5.2 For every permutation group G on X, the map g 7→ ρg

is a faithful homomorphism of groups G→ GL(V ).

Proof. First, note that ρg is a linear map V → V . Indeed, if f1, f2 ∈ V and
α, β ∈ R, then, for each x ∈ X ,

(ρg(α1f1 + α2f2))x = (g(α1f1 + α2f2))x = (α1f1 + α2f2)(g
−1x)

= α1(f1(g
−1x)) + α2(f2(g

−1x))

= α1((gf1)x)) + α2((gf2)x)

= (α1(gf1))x+ (α2(gf2))x = ((α1(gf1)) + (α2(gf2)))x

= (α1ρg(f1) + α2ρg(f2))x

and so ρg(α1f1 + α2f2) = α1ρg(f1) + α2ρg(f2).
Next, observe that g 7→ ρg is a homomorphism of groups. For, (ρg1g2

f)x =
((g1g2)f)x = f((g1g2)

−1x) = f(g−1
2 (g−1

1 x)) = (g2f)(g−1
1 x) = (g1(g2f))x =

(ρg1
ρg2

f)x whenever g1, g2 ∈ G, f ∈ V and x ∈ X , which shows that ρg1g2
=

ρg1
ρg2

.
Finally we verify that the homomorphism is faithful. Suppose g ∈ Ker ρ,

that is, ρg is the identity on V . For x ∈ X , let δx be the function in
V with value 1 on x and value 0 on all points distinct from x. Then
δx(y) = ρgδx(y) = δx(g−1y) for all y ∈ X , which forces gy = y for all
y ∈ X . In particular, g = 1, which shows Ker ρ = 1. tu

The dimension of the representation space is equal to |X |. If G is infinite,
we can still find infinite-dimensional representations this way.

Suppose that G is a subgroup of GL(V ) for some finite-dimensional com-
plex vector space V . Can we turn G into a permutation group? Of course,
we could use Cayley’s Theorem directly. But a more natural approach would
be to pick a vector v ∈ V and study its orbit Gv = {gv | g ∈ G}. Recall from
basic group theory that the stabilizer in G of a vector v in V is the group
Gv = {g ∈ G | gv = v}.
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Proposition 1.5.3 Let G be a finite subgroup of GL(V ) for some vector
space V . Then there is a finite G-invariant subset X of V such that the
map G → Sym(X) obtained by restricting each g ∈ G to X is a faithful
permutation representation of G.

Proof. If V is finite-dimensional, simply take a basis B of V and consider
the union of B and all its translates under G, that is

⋃
g∈G gB.

For V of arbitrary dimension, pick a nonzero vector v ∈ V . The permuta-
tion representation ofG onGv is equivalent to left multiplication on the cosets
of Gv in G. The kernel of this representation is Kv =

⋂
h∈G hGvh

−1. If Kv is
the trivial subgroup of G, then the homomorphism G → Sym(Gv) is injective
and G is a permutation group on Gv. Otherwise, there is a vector v1 ∈ V
moved byKv. Now takeX = Gv∪Gv1. The kernel of the action G→ Sym(X)
is strictly contained in Kv. As G is finite, recursion will lead to a finite set T
of vectors such that the kernel of the action of G onX =

⋃
t∈T Gt is trivial. tu

In a real vector space V we can even find a copy of the regular represen-
tation, as the set V \⋃g∈G\{1} CV (g) is non-empty. To see this, observe that

each fixed point set CV (g) = {v ∈ V | gv = v} for nontrivial g ∈ G is a
proper subspace of V .

1.6 Coxeter groups

Although presentations in general can be very difficult, particular kinds of
presentations can be very convenient. Our lectures will be primarily concerned
with the following set of presentations.

Definition 1.6.1 Let M = (mij)1≤i,j≤n be a symmetric n× n matrix with
entries from N∪ {∞} such that mii = 1 for all i ∈ [n] and mij > 1 whenever
i 6= j. The Coxeter group of type M is the group

W (M) = 〈{s1, . . . , sn} | {(sisj)
mij = 1 | i, j ∈ [n], mij <∞}〉

We often write S instead of {s1, . . . , sn} and, if no confusion is imminent, W
instead of W (M). The pair (W,S) is called the Coxeter system of type M .

Example 1.6.2 The two lowest rank cases lead to some familiar groups and
one new group.

(i). If n = 1, then M = (1) and W (M) = 〈s1 | s21 = 1〉, the cyclic group of
order 2.

(ii). If n = 2, then M =

(
1 m
m 1

)
and W (M) = Dih2m for some m ∈

N ∪ {∞}. The Coxeter matrix is indicated by I2(m). For m = 2, this is the
Klein Four group of Table 1.1. For m = ∞, this is a new group, called the
infinite dihedral group.
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Example 1.6.3 The presentation of Symn+1 in Proposition 1.2.7 can be
recast as follows. By An we denote the Coxeter matrix




1 3 2 2 · · · · · · 2
3 1 3 2 · · · · · · 2
2 3 1 3 · · · · · · 2

2
. . .

. . .
. . .

. . .
. . .

...
2 · · · · · · 3 1 3 2
2 · · · · · · 2 3 1 3
2 · · · · · · 2 2 3 1




of square size n. Then W (An) is a presentation of Symn+1. (Note that we
blur the distinction between presentation and group.)

For n = 2, the Coxeter matrix A2 coincides with I2(3), and so Sym3
∼=

Dih6.

Notation 1.6.4 The Coxeter matrix M = (mij)1≤i,j≤n is often described
by a labelled graph Γ (M) whose vertex set is [n] and in which two nodes i
and j are joined by an edge labeled mij if mij > 2. If mij = 3, then the label
3 of the edge {i, j} is often omitted. If mij = 4, then instead of the label 4 at
the edge {i, j} one often draws a double bond. This labelled graph is called
the Coxeter diagram of M .

The data stored in the Coxeter matrix M can be reconstructed from the
Coxeter diagram, and so the Coxeter diagram and the Coxeter matrix can
be identified. For instance, the diagram of An is

◦
1

◦
2

◦
3
· · · · · · ◦

n−1
◦
n

.

Example 1.6.5 The Platonic solids in real Euclidean space are closely linked
to Coxeter groups. The automorphism groups of these Platonic solids, in some
sense, are Coxeter groups. In the course of our lectures, it will be clear how
the Platonic solids can be brought forward from the presentations defining
the corresponding Coxeter groups. Here is a taste of what will happen. Let
M be one of the matrices from Table 1.2.

Let W = W (M) and set H = 〈s2, s3〉. By enumeration of cosets we find
W/H to have the same number of elements as the corresponding Platonic
solid has vertices. Now define a graph on W/H by stipulating that the cosets
gH and kH are adjacent whenever k−1g ∈ Hs1H . Observe that this relation
is indeed symmetric, so it defines a graph. This graph is called the Cayley
graph Γ (W,H, {s1}). More generally, for a subgroup H of a group G and a
subset S equal to S−1 = {s−1 | s ∈ S}, we can defined Γ (G,H, S) similarly.
Notice the difference with the Schreier graph. The group W acts as a group
of automorphisms on the Cayley graph. In general, this is not the case for
the Schreier graph.
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Table 1.2. Coxeter diagrams related to Platonic solids

Platonic solid Coxeter diagram diagram notation

tetrahedron
1
◦

2
◦

3
◦ A3

cube
1
◦

2
◦

3
◦

octahedron
1
◦

2
◦

3
◦ B3

icosahedron
1
◦

2
◦ 5 3

◦ H3

dodecahedron
1
◦ 5 2

◦
3
◦

The Cayley graph can also be obtained from the Platonic solid by calling
two vertices adjacent if they are distinct and lie on a common edge of the
solid. Thus, the incidence structure of vertices, edges, and —with a little
more thought— also the faces of the Platonic solid can be fully reconstructed
from the Coxeter group.

Figure 1.2 shows the relationship between the Cayley graph Γ = Γ (W, 1, S),
for W of type B3 and the cube P . A vertex of Γ is visualized as a point in the
face of the cube P to which it belongs and nearest to the edge and vertex of P
to which it belongs. It is joined by a dashed line to the unique Cayley vertex
in the same face with the same nearest edge of P . It is joined by a dotted line
to the unique Cayley vertex in the same face with the same nearest vertex,
and with a full line to the unique Cayley vertex belonging to the same vertex
and edge of P . Not all vertices are drawn: only those on the three visible
faces of P .

Fig. 1.2. The Cayley graph Γ (W, 1, S) for W of type B3 drawn on the cube.
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Example 1.6.6 The Coxeter groups appearing in Example 1.6.5 are all fi-
nite. Table 1.3 lists some Coxeter diagrams with infinite Coxeter groups re-
lated to regular tilings of the plane.

Table 1.3. Coxeter diagrams related to planar tilings

E2 tiling Coxeter diagram diagram notation

quadrangles
1
◦

2
◦

3
◦ eB2

hexagons
1
◦ 6 2

◦
3
◦ eG2

triangles
1
◦

2
◦ 6 3

◦

Figure 1.3 shows a regular tiling of the Euclidean plane by triangles.

Example 1.6.7 Besides tilings of the Euclidean plane, regular examples of
the hyperbolic plane can also be produced by means of Coxeter groups. For
instance, the Coxeter diagram

1◦ 2◦ 7 3◦

leads to a Coxeter group whose Cayley graph can be represented in the hy-
perbolic plane as depicted in Figure 1.4.

Fig. 1.3. Tiling by triangles
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Fig. 1.4. Hyperbolic tiling by heptagons

1.7 Why Coxeter groups?

Coxeter groups turn out to be a very interesting class of groups. They behave
very nicely in many respects; we name three.

1. Coxeter groups have nice solutions to the word problem. The word prob-
lem is the quest for an algorithm that decides whether two words in the
generators of a presentation represent the same element in the group. For
finitely presented groups in general, this problem cannot be solved by an
algorithm. This topic will be addressed in Lectures 2 and 8.

2. Coxeter groups have faithful linear representations as groups generated
by reflections. Among the groups occurring in this way are all real finite
linear groups generated by reflections. Some of these groups are groups of
symmetries of the regular polytopes in Euclidean space. We will prove the
faithfulness in Lecture 3, classify the finite Coxeter groups in Lecture 6,
and discuss further remarkable properties of the reflection representation
in Lecture 7.
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3. There are abstract analogues of the regular polytopes as discussed in Sec-
tion 1.6 for each of the Coxeter groups, in the guise of combinatorial
geometries built from the presentation; they possess dazzlingly beautiful
and simple properties. Some aspects will appear in Lectures 4 and 5.

Besides beauty, their significance for other major results in mathematics,
such as the classification of complex simple Lie algebras, of Lie groups and
of algebraic groups motivates our choice of Coxeter groups as a topic for this
course. To illustrate this, we present (without a shred of proof—the proof
occupies more than 15,000 journal pages) the most important result in finite
group theory that we know.

Recall that a simple group is a group whose only normal subgroups are
the group itself and the trivial subgroup. The names of the groups occurring
in the conclusion are not important for an understanding of the gist of the
result. If N is a proper nontrivial normal subgroup of G, then G can be
rebuilt from the groups N and G/N together with a prescription of how to
piece these two parts together. By recursion, this leads us to the smallest
building blocks: the simple groups.

Theorem 1.7.1 (Classification of Finite Simple Groups) Every finite
simple group is isomorphic to (at least) one of the following groups.

(i) A cyclic group of prime order
(ii) An alternating group Altn for some n ≥ 5
(iii) The nonabelian simple section of a Chevalley group An−1(q) = SL(n, q)

for n ≥ 3 and (n, q) 6= (2, 2), (2, 3), Bn(q) = O(2n + 1, q) for n ≥ 2,
Cn(q) = Sp(2n, q) for n ≥ 3, Dn(q) = O+(2n, q) for n ≥ 4, E6(q),
E7(q), E8(q), F4(q), G2(q)

(iv) The nonabelian simple section of a twisted Chevalley group 2An−1(q) =
U(n, q) for n ≥ 3, 2B2(2

2m+1) for m ≥ 1, 2Dn(q) = O−(2n, q) for
n ≥ 4, 3D4(q),

2E6(q),
2F4(2

2m+1) for m ≥ 0, 2G2(3
2m+1) for m ≥ 1

(v) A sporadic group M11, M12, M22, M23, M24, J2, Suz, HS, McL, Co3,
Co2, Co1, He, Fi22, Fi23, Fi′24, HN, Th, B, M, J1, O′N, J3, Ly, Ru, J4

The series occurring in (i) and (ii) are the elementary examples of fi-
nite simple groups, with which you have already made acquaintance. The
26 groups listed in (v) are quite sensational, but we will put them aside as
singular phenomena. The Monster group M is the biggest among these. Most
of the symbols refer to mathematicians who have discovered or constructed
these groups.

The bulk of the groups are the series in (iii) and (iv). We will illustrate the
nature of these groups by means of the example An−1(q) = SL(n, q), whose
simple section is PSL(n, q). Here, SL(n, q) stands for the group SL(Fn

q ) as
introduced in Example 1.2.8, and so is the group of all n×n matrices over the
field Fq of order q (a prime power) whose determinant equals 1. Thus, SL(n, q)
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coincides with the group SL(Fn
q ) introduced in Exercise 1.8.1. This group need

not be simple as the center is the subgroup µn of all scalar multiplications
λidn with λn = 1, which is non-trivial if and only if gcd(n, q − 1) > 1. The
quotient with respect to the normal subgroup µn however is simple if n ≥ 2
and (n, q) 6= (2, 2), (2, 3).

The group T of all diagonal matrices within SL(n, q) has order (q−1)n−1.
It is a normal subgroup of the group N of all monomial matrices in SL(n, q).
If q > 2, then N is the full normalizer of T in SL(n, q), that is, N = {g ∈
SL(n, q) | gTg−1 = T}. (Do you see why q = 2 gives an exception?) By
construction, T is a normal subgroup of the normalizer and its quotient group
N/T is isomorphic to Symn, the symmetric group on [n]. This is the Coxeter
group of type An−1. It is no coincidence that SL(n, q) is als named An−1(q).

Similary, the symbols An, Bn, Cn, Dn, En, F4, G2 in (iii), all refer to
Coxeter types of groups occurring as the quotient of the normalizer of a
maximal diagonizable subgroup T by T . Those in (iv) are supplied with a
superscript preceeding the symbol. These refer to symmetries of the Coxeter
matrix. For example, the diagram

E6 = ◦
1

◦
3

2◦

◦
4

◦
5

◦
6

has an automorphism of order 2, which plays a role in the definition of the
group 2E6(q). The superscript refers to the order of the diagram automor-
phism. These groups are variations of those in (ii) that we shall not go into
any further. The point we are trying to make here is that, for an understand-
ing of the finite simple groups (or Lie groups, of which the series (iii) and
(iv) are finite analogues), Coxeter groups are a key tool.

1.8 Exercises

Section 1.1

Exercise 1.8.1 (Cited in Section 1.4) Let V be a vector space over a field
F of dimension n. By GL(V ) we denote the set of all invertible linear trans-
formations of V .

(a) Prove that GL(V ), with the usual composition of maps as multiplication,
is a group.

(b) Let F = Fq, the finite field of q elements. Establish the following formula
for the order of GL(V ).

|GL(V )| =
n∏

i=1

(qn − qi−1).
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(Hint: Use the fact that the number of elements of GL(V ) is equal to the
number of bases of V .)

(c) By SL(V ) we denote the subset of SL(V ) of all linear transformations of
determinant 1. Prove that SL(V ) is a normal subgroup of GL(V ).

(d) Let F = Fq, the finite field of q elements. Establish the following formula
for the order of SL(V ).

|SL(V )| = q(
n

2)
n∏

i=2

(qi − 1).

Section 1.2

Exercise 1.8.2 (A presentation of the trivial group) (Cited in Remark
1.2.6) Show that

〈a, b |aba−1 = b2, bab−1 = a2〉
is a presentation of the trivial group.

Exercise 1.8.3 (Cited in Definition 1.2.1) Show that the additive group
of the rational numbers Q is not finitely generated (and hence not finitely
presented).

Exercise 1.8.4 Adopt the setting of Example 1.2.3. Prove that

〈a, c | a2 = 1, (ac)2 = 1, cm = 1〉

is another presentation of Dih2m.
(Hint: Interpret c as ab and use Theorem 1.2.4 in two ways.)

Exercise 1.8.5 Let m ∈ N, m ≥ 3, and let τk be as in Example 1.2.5. Prove
that 〈τm, τm−1, τm−2〉 = Symm.
(Hint: Use the element τm−2τm−1τmτm−1 and show that the generators of
Symm as given in Proposition 1.2.7 belong to 〈τm, τm−1, τm−2〉.)

Exercise 1.8.6 Prove the statement of Example 1.2.8 that the two displayed
matrices generate SL(Z2).

Section 1.3

Exercise 1.8.7 Prove Theorem 1.3.2.

Exercise 1.8.8 For m ∈ N, let G be the cyclic group of order m.

(a) Prove that, if m is prime, the group G does not embed in Symn for
n < m.
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(b) Suppose m = p · q with gcd(p, q) = 1. Show that G embeds in the di-
rect product Symp × Symq . Conclude that G has a faithful permutation
representation of degree p+ q.

Exercise 1.8.9 What is the minimal degree of a faithful permutation rep-
resentation of Dih2m?
(Hint: Adopt the setting of Example 1.2.3 and use Exercise 1.8.8 to find the
minimal degree needed to embed c.)

Section 1.4

Exercise 1.8.10 What is the minimal degree of a faithful real linear repre-
sentation of Dih2m?

Exercise 1.8.11 (Cited in Remark 1.4.3) Let G be a finite group and F a
field. By F[G] we denote the following algebra over F. As a set, it consists of
all formal linear combinations

∑

g∈G

λgg with λg ∈ F.

The vector space structure on F[G] consists of coordinatewise addition and
scalar multiplication; so dim (F[G]) = |G|. The multiplication is the bilinear
extension of the group multiplication.

(a) Verify that F[G] is an algebra over F.
(b) For g ∈ G, denote by Lg left multiplication by g:

Lg

(
∑

h∈G

λhh

)
=
∑

h∈G

λhgh.

Establish that the map g 7→ Lg : G → GL(F[G]) is a faithful linear
representation of G.

Section 1.5

Exercise 1.8.12 Let n ∈ N, n > 1. View Symn as a permutation group on
[n] in the natural way. Consider the map ρ of Proposition 1.5.2.

(a) Show that there is a vector v ∈ V fixed by all elements in the ρ image of
Symn.

(b) Show that the linear span U of all vectors of the form
∑

i∈[n] λiδi with∑
i λi = 0 is a linear subspace of V invariant under the ρ image of Symn.

(c) Prove that the map ρU : Symn → GL(U) given by ρU
g = (ρg)|U (the

restriction to U of ρg) is a faithful linear representation of Symn.
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Section 1.6

Exercise 1.8.13 Let α, β ∈ R with α2 + β2 = 1 and set A =

(
0 1
1 0

)
,

B =

(
α β
β −α

)
and write C = AB.

(a) Show that 〈A,B〉 is a quotient group of Dih∞.
(b) Determine the normal subgroups of Dih∞.
(c) Derive that every proper quotient group of Dih∞ is isomorphic to Dih2m

for some m ∈ N.
(d) Show that C is diagonalizable (over C) with eigenvalues λ = eiφπ, λ−1 =

e−iφπ for some φ ∈ (0, 1] such that 2β = λ+ λ−1.
(e) For which values of α and β do we have 〈A,B〉 ∼= Dih∞?

(Hint: Which restrictions on α, β force Cm 6= 1 for all m ∈ N?)

Exercise 1.8.14 (Cited in Lemma 2.2.1) Let (W,S) be a Coxeter system of
type M .

(a) Prove that there is a homomorphism of groups sg : W → {±1} deter-
mined by sg(s) = −1 for each s ∈ S.

(b) Let K be a connected component of the graph M ′ obtained from M by
omitting all edges with an even label. Prove that there is a homomor-
phism of groups sgK : W → {±1} determined by sgK(s) = −1 for each
s ∈ K and sgK(s) = 1 for each s ∈ S\K.

(c) Show that two members of S are conjugate in W if and only if they
belong to the same connected component of the graph M ′ of (b).

Section 1.7

Exercise 1.8.15 Let n ≥ 2 and let F be a field. We have seen that, for F

finite, the Coxeter groupW (An−1) is isomorphic to Symn and to the quotient
of the subgroup N of monomial matrices in SL(Fn) of a diagonal subgroup
T of GL(Fn) by T . This statement also holds for F an arbitrary field. Now
denote by M the subgroup of all monomial matrices in GL(Fn). Thus N is a
subgroup of M .

(a) Show that Symn embeds in M .
(b) Derive from this embedding that Symn embeds in N if F has character-

istic 2.
(c) Consider the linear representation ρ : Symn → GL(Fn) introduced in

Lemma 1.5.2 for F a field with characteristic distinct from 2. (See also
Exercise 1.8.12.) Show that det(ρg) is the sign of the permutation g ∈
Symn.

(d) Prove that for n odd and F a field with characteristic distinct from 2,
there is an embedding of Symn in N .

(e) For which values of n is Symn embeddable in N if the characteristic of
F is distinct from 2?
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1.9 Notes

Section 1.2. A very accessible introduction to presentations of groups by
generators and relations is [21].

Section 1.3. Books like [30, 43] concentrate fully on permutation groups.

Section 1.4. Not every infinite group is a linear group. For instance, the
automorphism group of a free group on three generators is not linear; see [16].
Every finite linear group has a faithful orbit on vectors. It is not true however,
that every finite linear group has a faithful orbit on 1-spaces, although the
number of counterexamples is small; see [31].

Section 1.5. The process of coset enumeration is not an algorithm as it will
not always terminate. If the finitely presented group is known to be finite,
then the process will terminate in a finite number of steps. See [8].

There is a process similar to coset enumeration for trying to make linear
representations of a group starting from a presentation by generators and
relations, but it is less frequently used. See [24].

Section 1.6. A very thorough and basic reference for Coxeter groups is [2].
A very good textbook on the subject is [20]. Figure 1.4 is from [42].

Section 1.7. The most comprehensive introduction to the Classification of
Finite Simple Groups is probably [17], which is followed by a series of volumes
intended to supply a full proof. Today volume 6 is the latest of the as yet
unfinished series.



2. Presentations

In this lecture we focus on presentations of groups by means of generators and
relations. In Section 1.6 we defined Coxeter groups in this way. In this chapter,
we derive from this definition some of the basic properties of Coxeter groups.
But, before going into Coxeter groups, we look at the basics of presentations
of group by generators and relations. In particular, we start with a more
fundamental treatment of the free group on a set A than the one given in
Section 1.2.

2.1 Free groups

As we saw in Section 1.2, free groups are needed for the definition of group
presentations. In order to discuss free groups, we introduce free monoids.

Definition 2.1.1 Let A be an alphabet, that is, a set of symbols. The set
M(A) of all words over this alphabet, including the empty word, denoted by
ε, is a monoid with ε as the unit and concatenation for multiplication. It is
called the free monoid over A.

The function l : M(A) → N denotes length. So l(a1 · · · aq) = q if
a1, . . . , aq ∈ A. The empty word ε has length 0. The set A is the subset
of words of M(A) of length 1. To emphasize its dependence on A, we some-
times write lA instead of l.

The notion free refers to properties like those recorded in the following
proposition.

Proposition 2.1.2 For each monoid M generated by a set B of elements,
and each map φ : A → B, there is a unique homomorphism of monoids
φ′ : M(A) →M extending φ.

Proof. Let w ∈ M(A). Then there is a unique expression w = a1a2 · · · aq with
a1, a2, . . . , aq ∈ A. The element w = ε corresponds to the case where q = 0.
We set

φ′(w) = φ(a1)φ(a2) · · ·φ(aq). (2.1)
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Interpreting the empty product as the unit element in M , we find φ′(ε) = 1.
Clearly φ′ is a monoid homomorphism M(A) → M extending φ. As for
uniqueness, the definition of monoid homomorphism requires that the unit
element maps to the unit element φ′(ε) = 1 and the multiplicative rule for
a homomorphism forces (2.1). tu

If we start with the monoid M generated by a subset B, we can take
A = B and φ : A → B the identity map. The proposition shows that every
monoid generated by a set B is the quotient of the free monoid on B. As
a result, each element of M can be represented by a word in B, that is,
an element of M(B). The representative is easy to store on a computer. It
may be hard though, to decide whether (or not) two words represent the
same element of M . Finding an algorithm for deciding this is called the word
problem. In its greatest generality, this problem is undecidable in the sense
that there is no such algorithm (for a Turing machine—the most common
theoretic model for computers). For certain special classes of groups, like
Coxeter groups, there are satisfactory solutions.

Definitions 2.1.3 An equivalence relation ∼ on a monoid M is called a
congruence if x ∼ y implies uxv ∼ uyv for all x, y, u, v ∈ M . The set M/ ∼
of equivalence (also called congruence) classes in M with respect to ∼ has
a well-defined multiplication · by means of x̃ · ỹ = x̃y, where x, y ∈ M and
x̃ denotes the class of x. This turns M/ ∼ into a monoid with unit ε̃. This
monoid is called the quotient monoid of M with respect to ∼.

An extreme example of a congruence relation is ∼= M ×M . The quo-
tient monoid of M with respect to this relation is the trivial monoid. As an
intersection of congruence relations is again a congruence relation, we can
define the congruence relation generated by a relation as the intersection of
all congruence relations containing it.

Now suppose X = A∪A−1 is a disjoint union of two sets A and A−1 which
are in bijective correspondence by means of ·−1 : A → A−1. So A−1 consists
of the symbols a−1 for a ∈ A. We will also write (a−1)−1 = a for a ∈ A, so
the map x 7→ x−1 is defined on all of X . We will use the congruence relation
∼ generated by xx−1 ∼ ε for each x ∈ X to define F1(A) as the monoid
M(X)/ ∼.

The word problem for M(X)/ ∼ is easily solved. Recall from Section 1.2
that a word in M(X), where X = A ∪ A−1, is reduced if no xx−1 occurs in
it for any x ∈ X .

Lemma 2.1.4 For a set A, put X = A ∪ A−1 and consider F1(A) =
M(X)/ ∼. By removing all occurrences xx−1 from a word w ∈ M(X) in
any order, we obtain a unique reduced word in w̃.
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Proof. First consider the monoid M(X)/ ∼. Every generator x̃ with x ∈ X

has inverse x̃−1 and so each element of M(X)/ ∼ has an inverse. This implies
that M(X)/ ∼ is a group.

We will prove that, by removing occurrences xx−1 from a word w ∈ M(X)
in any order, we obtain a unique reduced word in w̃ (as defined in Section 1.2).
This then establishes that the multiplication defined on F(A) coincides with
the multiplication on M(X)/ ∼ expressed in terms of the unique congruence
class representatives (the reduceed words). This will suffice for the proof of
the first statement.

We proceed by induction on l(w), the length of w as a word in X . If w
is reduced, there is nothing to prove. So, we may assume that w = uxx−1v
for certain x ∈ X and u, v ∈ M(X). Suppose that w reduces to the reduced
word r. In view of the induction hypothesis, it will suffice to show that any
reduction to r can be re-arranged in such a way that w ⇒ uv, that is,
removing the above occurrence of xx−1, is the first step of the reduction.
Let’s call this step S. If S occurs in a reduction, the steps prior to S do not
touch the occurrence xx−1 in the sense that they take place entirely in u or
entirely in v; so we can swap the order of events so as to start with S and
still reach r.

Since xx−1 does not occur in r, there is at least one stage in which
either the letter x or x−1 in uxx−1v is removed. This can only happen if
x−1 preceeds x, so u = u′x−1, or if x follows x−1, so v = xv′. In the
first case, the step w = u′(x−1x)x−1v ⇒ u′x−1v (removal of x−1x) has
the same effect as S and similarly for the second case. In this way, we
can ensure that S takes place in the reduction from w to r and we can
finish by invoking the previous paragraph. tu

As a consequence, we can view F1(A) as the set of reduced words in M(X)
with multiplication the multiplication in M(X) followed by a reduction of
the product to a reduced word. This is precisely the construction of F(A) in
Section 1.2.

Proposition 2.1.5 The group F(A) is well defined and isomorphic to F1(A).
It is the free group on A in the sense that it is generated by A and, for any
group G generated by a set B and every map φ : A → B, there is a unique
homomorphism F(A) → G extending φ.

Proof. The first statement is derived above. Proving the second statement
is part of Exercise 2.4.2. tu

Recall the notions Coxeter group and Coxeter system from Definition
1.6.1. At this stage, it is not clear that the generators si, sj are distinct
elements of W for i 6= j. It will be shown to hold later (in Theorem 2.3.5(i)).
We often write r1, r2, . . . for arbitrary elements of S = {si | i ∈ [n]}.



26 2. Presentations

Remark 2.1.6 Instead of considering the Coxeter group W (M) as a quo-
tient of the free group F(S), where S = {s1, . . . , sn}, it makes sense to exploit
the fact that S consists of elements of order at most 2 and to view W (M) as
a quotient of the group

FI(S) = 〈S | {s2 = 1 | s ∈ S}〉

by the normal subgroup generated by all images in FI(S) of the words
(sisj)

mij in M(S) for i, j ∈ [n] with mij < ∞. For, by Exercise 2.4.3(a),
the word problem for FI(S) has an easy solution, as follows. If w ∈ M(S),
a repetition in w is an occurrence of ss in w for some s ∈ S. A word with-
out repetitions is called simple. Removal of all repetitions, from w leads to
a unique simple word w′ with the same image in FI(S) without repetitions.
Now two words in M(S) represent the same element of FI(S) if and only if the
corresponding simple words are equal. Alternatively, we can view FI(S) as the
subset of M(S) consisting of all simple words with product the composition
of the product in M(S) with the reduction to a simple word.

In conclusion, in order to study words representing elements of W (M),
we will work with words in M(S) and often reduce representatives to simple
words. We will write δM or just δ for the monoid homomorphism M(S) →
W (M) that assigns to s in M(S) the element s in W (M). It is surjective and
its restriction to the set of simple words can also be interpreted as a group
homomorphism FI(S) →W (M).

Definition 2.1.7 A word of minimal length in the inverse image under δ of
an element w ∈ W (M) will be called a minimal expression for w. The length
of a minimal expression for w ∈W is called the length of w, and also denoted
l(w).

Example 2.1.8 If M = B2 = I2(4) (see Example 1.6.2), then W (M) is
the dihedral group of order eight, S = {s1, s2} has cardinality two, M(S) is
infinite (the monoid of all words in two letters). Minimal expressions for the
elements of W are 1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, and s1s2s1s2. The
lengths of the corresponding elements of W are 0, 1, 1, 2, 2, 3, 3, 4. The
last expression is equivalent to s2s1s2s1 in the sense that, in W , we have
s1s2s1s2 = s2s1s2s1.

2.2 Length on Coxeter groups

We collect some basic and useful observations on the length function of a
Coxeter group.

Lemma 2.2.1 Let (W,S) be a Coxeter system. For s ∈ S and w ∈ W , we
have l(sw) = l(w) ± 1.
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Proof. Clearly, l(sw) ≤ 1+l(w) and l(w) = l(s(sw)) ≤ 1+l(sw), so l(w)−1 ≤
l(sw) ≤ l(w)+1. It remains to show that the parities of l(w) and l(sw) differ.

Write S = {s1, . . . , sn} and let (mij)1≤i,j≤n be the Coxeter matrix of
(W,S). By Exercise 1.8.14(i) there is a homomorphism sg : W → {±1}
of groups (the latter being the multiplicative subgroup of the rationals of
order 2) determined by sg(r) = −1 for each r ∈ S. If w = r1 · · · rq is an
expression for w, then σ(w) = σ(r1) · · ·σ(rq) = (−1)q. In particular, (−1)q

does not depend on the expression chosen and equals (−1)l(w). This implies
(−1)l(sw) = sg(sw) = sg(s)σ(w) = (−1)l(w)+1. Hence l(sw) ≡ l(w) + 1
(mod 2), that is, the parities of l(sw) and l(w) differ. tu

Definition 2.2.2 Let T ⊆ S. If w ∈ W satisfies l(jw) > l(w) for all j ∈ T ,
then w is called left T -reduced . The set of all left T -reduced elements of W
is denoted by TW . Similarly, for K ⊆ S, an element w ∈ W is called right
K-reduced if l(wk) > l(w) for all k ∈ K, and WK denotes the set of all right
K-reduced elements of W .

Let W = 〈S〉. As indicated before, for T ⊆ S, we denote the length
function on the subgroup 〈T 〉 of W with respect to the generating set T .

Lemma 2.2.3 Let (W,S) be a Coxeter system. For each w ∈ W and T ⊆ S,
the following properties hold.

(i) There are u ∈ 〈T 〉 and v ∈ TW such that w = uv and l(w) = l(u)+l(v).
(ii) If w ∈ 〈T 〉, then l(w) = lT (w).

Proof. Consider the subset D of 〈T 〉 ×W consisting of all pairs (u, v) with
w = uv and l(w) = l(u)+l(v) such that l(u) = lT (u). This set is nonempty, as
it contains (1, w). Let (u, v) be an element of D with l(u) maximal. Suppose
t ∈ T is such that l(tv) < l(v). Then v = tv′ for some v′ ∈ W with l(v) =
l(v′)+1 and so w = (ut)v′ is a decomposition of w with l(w) ≤ l(ut)+ l(v′) ≤
(l(u) + 1) + (l(v)− 1) = l(w), whence l(ut) = l(u) + 1. Now l(ut) ≤ lT (ut) ≤
lT (u) + 1 = l(u) + 1 = l(tu). Therefore, (ut, v′) ∈ D with l(ut) > l(u), a
contradiction. We conclude that v ∈ TW . This proves (i).

If w ∈ 〈T 〉, then the proof of (i) gives a decomposition w = uv with
u ∈ 〈T 〉 and v ∈ TW such that l(w) = l(u) + l(v) = lT (u) + l(v). But now
v ∈ 〈T 〉 ∩ nTW = {1}, so w = u and l(w) = lT (w), as required for (ii). tu

The study of Coxeter groups can be reduced to irreducible types, as fol-
lows.

Definition 2.2.4 When we talk about a connected component of a Coxeter
matrix M , we view M as a labelled graph. In other words, a connected
component of M is a maximal subset J of [n] such that mjk = 2 for each
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j ∈ J and k ∈ [n]\J . If M has a single connected component, it is called
connected or irreducible. A Coxeter group W over a Coxeter diagram M is
called irreducible if M is connected.

If J is a subset of the nodes of M , we also let J stand for the labelled
graph induced on J by M ; in other words, the matrix M |J×J . In particular,
we write W (J) for the Coxeter group of type J .

Proposition 2.2.5 Let W be a Coxeter group of type M and let J1, . . . , Jt

be a partition of the vertex set of the labelled graph M into connected compo-
nents. Then W (M) ∼= W (J1) ×W (J2) × · · · ×W (Jt).

Proof. By induction on the number of connected components and application
of Exercise 2.4.7. tu

2.3 The reflection representation

Let (W,S) be a Coxeter system of type M and write n = |S|. We will con-
struct a real linear representation of W of degree n such that the images of
the elements of S are reflections in Rn.

Definition 2.3.1 A reflection on a real vector space V is a linear trans-
formation on V fixing a subspace of V of codimension 1, called its mirror
and having a nontrivial eigenvector with eigenvalue −1, called a root of the
reflection.

See Exercise 2.4.9 for an idea how to construct reflections.
Fix a Coxeter matrix M = (mij)i,j∈[n]. Let V be a real vector space with

basis (ei)i∈[n]. Denote by BM , or just B if M is clear from the context, the
symmetric bilinear form on V determined by

B(ei, ej) = −2 cos(π/mij) (2.2)

for i, j ∈ [n], with the understanding that B(ei, ej) = −2 if mij = ∞. The
form is indeed symmetric as mij = mji for i, j ∈ [n].

Definition 2.3.2 We call BM the symmetric bilinear form associated with
M . Let QM , or just Q, be the quadratic form determined by B, i.e.,

Q(x) =
1

2
B(x, x)

for all x ∈ V . We call QM the quadratic form associated with M .
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For x =
∑

i xiei we have Q(x) = −∑i,j∈[n] xixj cos(π/mij). The bilinear
form B is linked to Q via

Q(x+ y) = Q(x) +Q(y) +B(x, y) .

We use the form B to define reflections in GL(V ) preserving B. Here are
some general properties of B and these reflections.

Proposition 2.3.3 For the symmetric bilinear form B associated with the
Coxeter matrix M , and for the linear transformations ρi (i ∈ [n]) given by

ρi(x) = x−B(x, ei)ei (x ∈ V ), (2.3)

the following assertions hold.

(i) B(ei, ei) = 2 for all i ∈ [n].
(ii) B(ei, ej) ≤ 0 for all i, j ∈ [n] with i 6= j, with equality if and only if

mij = 2, or, equivalently, i and j are non-adjacent in the labelled graph
M .

(iii) For each i ∈ [n], the transformation ρi is a reflection on V with mirror
e⊥i := {x ∈ V | B(x, ei) = 0} and root ei.

(iv) For all x, y ∈ V we have B(ρix, ρiy) = B(x, y).
(v) The order of ρiρj equals mij .

Proof. (i) and (ii) are obvious from the definition of B.

(iii). This follows from Exercise 2.4.9.

(iv). By straightforward computation.

B(ρix, ρiy) = B(x−B(x, ei)ei, y −B(y, ei)ei))

= B(x, y) −B(x, ei)B(ei, y) −B(x, ei)B(y, ei)

+ 2B(x, ei)B(y, ei)B(ei, ei)

= B(x, y).

(v). The linear subspace Rei +Rej of V is invariant under ρi and ρj . Writing
b = B(ej , ei) we can express the matrices of these linear transformations on
the basis ei, ej as

ρi :

(
−1 −b
0 1

)
and ρj :

(
1 0
−b −1

)
,

so ρiρj has matrix (
−1 + b2 b

−b −1

)
.

The characteristic polynomial of this matrix is λ2 − (b2 − 2)λ+ 1, which, in
view of (2.2), factors as (λ− exp2πi/mij )(λ − exp−2πi/mij ), where i2 = −1.
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Suppose mij = ∞. Then the above matrix is not the identity, so (λ− 1)2

is the minimal polynomial of the matrix, and so the matrix must be of infinite
order. Hence ρiρj has infinite order.

Suppose mij <∞. The restriction of Q to Rei + Rej is

Q(xiei + xjej) = x2
i − 2xixj cos(π/mij) + x2

j

= (xi − xj cos(π/mij))
2 + x2

j sin2(π/mij).

This computation shows that Q is positive definite on Rei + Rej , and so
V = (Rei + Rej) + (e⊥i ∩ e⊥j ). In view of (iii), the order of ρiρj is the order
of its restriction to Rei + Rej . The above formula for the characteristic
polynomial of this restriction of ρiρj shows that its eigenvalues on that
subspace are exp2πi/mij and exp−2πi/mij , which are primitive mij-th roots
of unity. Therefore, the order of ρiρj is equal to mij . tu

Example 2.3.4 Going back to the octahedron of Example 1.6.5 where M =
B3, we see that, with respect to the basis e1, e2, e3 we have

B(x, y) = 2x1y1 + 2x2y2 + 2x3y3 −
√

2x1y2 −
√

2x2y1 − x2y3 − x3y2 .

So B is positive definite. After a coordinate transformation to an orthonormal
basis, ρ1, ρ2, and ρ3 can be seen to be the reflection symmetries of a regular
cube.

Theorem 2.3.5 Let M be a Coxeter matrix of dimension n.

(i) The mapping w 7→ ρw given by ρw = ρ1 · · · ρq whenever w = r1 · · · rq
with rj ∈ S (j = 1, . . . , q) defines a linear representation of W (M) on
V preserving B.

(ii) The mapping [n] → {ρi | i ∈ [n]} sending i to ρi is a bijection.
(iii) The restriction of ρ to the subgroup 〈si, sj〉 of W (M) is faithful for all

i, j ∈ [n].

Proof. (i). By Proposition 2.3.3(iii), (v), the subgroup of GL(V ) generated
by the ρi, i ∈ [n], satisfies the defining relations of W . According to Theorem
1.2.4, si 7→ ρi determines a unique group homomorphism ρ : W → GL(V )
obeying the given equations. Finally, ρ preserves B due to Proposition
2.3.3(iv).

Assertions (ii) and (iii) follow directly from Proposition 2.3.3(v). tu

Definition 2.3.6 If (W,S) is a Coxeter system of type M , the correspond-
ing linear representation ρ : W → GL(V )B of Theorem 2.3.5 is called the
reflection representation of W .
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The radical of BM is the following linear subspace of V .

V ⊥ = {x ∈ V | BM (x, y) = 0 for all y ∈ V }

Proposition 2.3.7 If W is an irreducible Coxeter group of type M and if
E is a proper invariant subspace of V with respect to the reflection represen-
tation ρ of W on V , then E is contained in the radical of BM .

Proof. We claim that ei 6∈ E for i ∈ [n]. To see this, set J = {i ∈ [n] | ei ∈ E}.
We need to show that J = ∅. As E is a proper subspace of V , we have J 6= I .
If J 6= ∅, then, since W is irreducible, we may assume that there exist s ∈ J ,
t ∈ [n]\J with B(es, et) 6= 0. Then ρtes = es−B(es, et)et and so B(es, et)et =
es − ρtes is in E. Therefore et ∈ E, whence t ∈ J , a contradiction. Hence,
J = ∅, so the claim holds.

Next, let x ∈ E. If i ∈ [n], then B(x, ei)ei = x − ρix ∈ E. But ei 6∈ E,
so B(x, ei) = 0 for all i ∈ [n]. Thus, x ∈ V ⊥, which establishes E ⊆ V ⊥. tu

Example 2.3.8 Direct products of Coxeter groups appear in elementary
geometry. For instance, in the Euclidean space E3, let Π be a double vertical
prism with a regular horizontal basis that is a polygon of n sides. Here double
indicates that the pyramid above the horizontal basis plane is the reflection
of the one under it. Then the group of isometries of Π is the Coxeter group
of type A1 ⊕ I2(n).

By the way, this example, with n = 3, shows that an abstract Coxeter
group does not uniquely determine its Coxeter diagram. For, W (A1 ∪̇ I2(3))
is the dihedral group of order 12 and hence isomorphic to W (I2(6)). See
Exercise 2.4.6(b) for another example.

Recall from Definition 2.2.4 the notion of irreducibility for Coxeter groups.
In the theory of linear representations, the notion of irreducibility also exists.

Definition 2.3.9 A linear representation φ : G → G(V ) of a group G on
a vector space V over the field F is called irreducible if there is no linear
subspace of V invariant under φ(G) except for {0} and V .

Such a linear representation is called absolutely irreducible if the repre-
sentation remains irreducible after each extension of the field of scalars of
V .

A representation is called semisimple (also known as completely reducible)
if it is the direct sum of irreducible representations.

Example 2.3.10 The cyclic group 〈c〉 of order n has a two-dimensional real
linear representation in which the generator c is mapped onto

φ(c) :=

(
cos(2π/n) sin(2π/n)
− sin(2π/n) cos(2π/n)

)
.
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This representation is irreducible but not absolutely irreducible as, over C,
the subspace C(1, i)> is invariant under 〈c〉. The representation is semisimple
over both R and C.

Example 2.3.11 (The infinite dihedral group) Let n = 2 and m12 =
∞. The linear representation ρ of W (M) occurs in V = R2. The form B and
the matrices ρ1 and ρ2 on the basis {e1, e2} appear in the proof of Proposition
2.3.3(v) with i = 1 and j = 2. The vector e1 + e2 is orthogonal to all of V
and spans the linear subspace Rad(B) := V ⊥. In particular, ρ is a reducible
representation in the sense that it leaves invariant a nontrivial proper linear
subspace of V . As Re1 + Re2 is the only 1-dimensional ρ-invariant subspace
of V , the representation is not semisimple.

Proposition 2.3.3(ii) tells us that, if W (M) is not irreducible, the reflec-
tion representation ρ is reducible. The converse does not hold as we saw in
Example 2.3.11. There is however, the following partial converse.

Corollary 2.3.12 Suppose that W is a Coxeter group. Then the following
three statements are equivalent.

(i) Rad(B) = 0.
(ii) The reflection representation of W is irreducible.
(iii) The reflection representation of W is absolutely irreducible.

Proof. The equivalence of (i) and (ii) is immediate from Proposition 2.3.7.
Since, clearly (iii) implies (ii), we only need to show that irreducibility implies
absolute irreducibility. Suppose that the reflection representation of W is
irreducible. Then the argument of the proof of Proposition 2.3.7 applies
equally well to the vector space V after extension of the scalars to a field
containing R, showing again that an invariant subspace of the vector space
over the extended field lies in the radical of B. Since the radical of B over
the extension field has the same dimension as over R, it must be trivial.
Hence, also over the extension field, there are no invariant subspaces, so
the representation is absolutely irreducible. tu

2.4 Exercises

Section 2.1

Exercise 2.4.1 A free monoid F on an alphabet A can be defined as a
monoid generated by a set A with the property stated in Proposition 2.1.2:
for each monoid M generated by a set B of elements, and for each map
φ : A → B, there is a unique homomorphism of monoids φ′ : F → M
extending φ. By the proposition, M(A) is a free monoid. Show that each free
monoid on A is isomorphic to M(A).
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Exercise 2.4.2 (Cited in Proposition 2.1.5) Prove the second statement of
Proposition 2.1.5. Show that each free group on A is isomorphic to F(A).

Exercise 2.4.3 (Cited in Remark 2.1.6) Let A be a finite set of size n.
Consider the congruence relation ∼′ generated by a2 ∼′ 1 for each a ∈ A, and
the congruence relation ∼′′ generated by ∼′ and ab ∼′′ ba for each a, b ∈ A.

(a) Show that each congruence class of ∼′ contains a unique word without
repetitions.

(b) Deduce that M(A)/ ∼′ is a group of order 2 if n = 1 and of infinite order
if n > 1.

(c) Show that M(A)/ ∼′′ is a group of order 2n.

Exercise 2.4.4 Let M be a Coxeter matrix of dimension n ≥ 1 and set
Σ = {σi | i ∈ [n]}. Let A(M) be the group with presentation

〈Σ | {σiσjσi · · ·︸ ︷︷ ︸
mij

= σjσiσj · · ·︸ ︷︷ ︸
mij

| i, j ∈ [n]}〉.

This group is called the Artin group of type M .

(a) Prove that there is a surjective homomorphism φ : A(M) →W (M) such
that φ(σj) = sj for j ∈ [n].

(b) Establish that A(M) is an infinite group.

Exercise 2.4.5 Consider the Coxeter diagram

◦ 5 ◦ 5 ◦

Show that the dihedral group Dih10 of order 10 is a homomorphic image of
the corresponding Coxeter group.

Exercise 2.4.6 The Coxeter diagram of a Coxeter group is not uniquely
determined by the abstract group. Here are two counterexamples.

(a) Show that the groups W (A1 ∪̇ I2(3)) and W (I2(6)) are both isomorphic
to the dihedral group of order 12.

(b) Consider the two diagrams of Figure 2.1. Prove that the two Coxeter
groups are isomorphic.
(Hint: Show that replacement of the reflection s4 by s1s2s4s2s1 in the left
hand Coxeter group leads to the same Coxeter group, but a presentation
corresponding to the diagram at the right hand side, and that replace-
ment of s4 by s2s1s4s1s2 in the right hand Coxeter group leads to the
same Coxeter group, but a presentation corresponding to the diagram at
the left hand side.)
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2

441 1

33

2

Fig. 2.1. Two Coxeter diagrams whose Coxeter groups are isomorphic.

Section 2.1

Exercise 2.4.7 (Cited in Proposition 2.2.5) Let A = B ∪̇C be the disjoint
union of the alphabets B and C and let R = S ∪̇T ∪̇U be the disjoint union
of a set S of relations in M(B ∪̇B−1), a set T of relations in M(C ∪̇C−1),
and the set U = {cb = bc | b ∈ B, c ∈ C}.
(a) Prove that 〈A | R〉 is isomorphic to the direct product 〈B | S〉 × 〈C | T 〉.
(b) Let J be an arbitrary subset of [n]. Verify that the subgroup of W (M)

generated by {si | i ∈ J} is a homomorphic image of W (J). (See Defini-
tion 2.2.4.)

(c) Suppose that M is a Coxeter diagram with connected components J and
K; here M is viewed as a graph as described in Notation 1.6.4. Show
that W (M) is isomorphic to the direct product of W (J) and W (K).

By use of the disjoint union symbol, we can express M as J ∪̇K, so that the
last result reads W (J ∪̇K) ∼= W (J) ×W (K).

Exercise 2.4.8 Show that l(w−1) = l(w) for each w in a Coxeter group W .

Section 2.3

Exercise 2.4.9 (Cited in Proposition 2.3.3) Let φ : V → R be a nonzero
linear form on the real vector space V and let a ∈ V \{0}.
(a) Prove that the map ra,φ : V → V defined by ra,φv = v−φ(v)a for v ∈ V

is a reflection if and only if φ(a) = 2.
(b) Show that every reflection on V can be written in this way.

Exercise 2.4.10 Prove that the group W (H3) is isomorphic to the direct
product Alt5 × Z/2Z of the alternating group on five letters and the cyclic
group of order 2. Conclude that W (H3) is not isomorphic to W (A4), as the
latter is isomorphic to Sym5.
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Exercise 2.4.11 The Coxeter matrix



1 3 3
3 1 3
3 3 1




is usually denoted Ã2. Set c = ρ1ρ2ρ3 in the notation of Proposition 2.3.3.
Prove that c has infinite order. (Hint: compute its minimal polynomial.) De-

duce that the Coxeter group W (Ã2) has infinite order.

Exercise 2.4.12 Compute the orders of W (H3) and W (B3).

Exercise 2.4.13 By PGL(2,Z) we denote the quotient of the group GL(2,Z)
of invertible 2× 2 matrices with integer entries by the central subgroup con-
sisting of the identity element and its negative. Take

ρ1 = ±
(

0 1
1 0

)
, ρ2 = ±

(
−1 1
0 1

)
, ρ3 = ±

(
1 0
0 −1

)
in PGL(2,Z).

(a) Prove that {ρ1, ρ2, ρ3} is a generating set for PGL(2,Z).
(b) Use the generating set in (a) to verify that PGL(2,Z) is a quotient of the

Coxeter group of type

◦
1

◦
2

∞ ◦
3
.

[In fact, PGL(2,Z) is isomorphic to this Coxeter group, as will become
clear in Exercise 3.4.8.]

(c) Derive from the above that W (A3) is isomorphic to PGL(2,F3) and (us-
ing Exercise 2.4.12 if needed) that W (H3) is isomorphic to PGL(2,F5).

2.5 Notes

The name Coxeter groups refers to the fact that Coxeter studied presentations
for finite linear groups generated by reflections, cf. [10, 11, 12].

Section 2.1 deals with the very beginning of combinatorial group theory.
See [1] for more comprehensive lectures. The fact that xx−1x can be rewritten
in two different ways that both lead to the same answer is a local confluence.
The famous Knuth-Bendix algorithm [22] is an attempt at constructing a
locally confluent rewrite system in more general circumstances, in order to
exploit the fact that local confluence implies global confluence (and hence
a unique reduced form) within a free monoid provided the rewrite rules de-
crease of words according to a well-founded (or Noetherian) ordering on the
free monoid. If the Knuth Bendix process is successful, the resulting locally
confluent rewrite system is called a completion. The solution of the word
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problem for the free group of Proposition 2.1.5 is a very simple instance of
Knuth Bendix completion.

The word problem for Coxeter groups can be solved by means of rewrite
rules as in Exercise 2.4.4. This fact will be proved later.

In Section 2.3, the linear representation of Theorem 2.3.5 is faithful. This
result, due to Tits, will be dealt with in the next lecture.

Exercise 2.4.6(b) is due to Mühlherr [27].



3. Coxeter groups are linear

In Definition 2.3.6, the reflection representation of a Coxeter group was in-
troduced. In this lecture, we will show that this representation is faithful.
This means that each Coxeter group is isomorphic to a group of real linear
transformations; this explains the title of this lecture.

The first section gives an brief introduction into affine spaces. The second
second section shows that a large class of groups generated by affine reflections
are in fact Coxeter groups. The third section contains the promised result.

Suppose that (W,S) is a Coxeter system and write n = |S|. When n <∞,
it is often convenient to order S and identify the ordered set with [n]. By
Theorem 2.3.5(ii) the subset of images of S inW is in bijective correspondence
with S. Therefore, we can view S as a subset of W .

Consider the real vector space V with basis es for s ∈ S. Let B : V ×V →
R be the bilinear form on V determined by B(er, es) = −2 cos(2π/mrs) for
r, s ∈ S. The reflection representation ρ : G → GL(V ) is given by ρs(v) =
v −B(v, es)es (v ∈ V, s ∈ S).

3.1 The affine space of a vector space

Affine spaces are closely related to vector spaces. Fixing a point in affine
space reveals the structure of a vector space. Here we start with the latter
and reconstruct an affine space from it. We state some facts without proofs
because they come down to elementary linear algebra.

Definition 3.1.1 Let F be a field and let V be a vector space over F. The
affine space A(V ) of V is the set V of points together with the collection of
distinguished subsets, called affine subspaces , and the relation of parallelism
on the latter, defined as follows:

• an affine subspace of A(V ) is a coset of a linear subspace of V ;
• two affine subspaces are parallel if they are cosets of the same linear sub-

space of V .

We write X ‖ Y to denote that X and Y are parallel. A real affine space
is an affine space of a real vector space. An affine line is a parallel of a 1-
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dimensional linear subspace. An affine hyperplane is a parallel of an (n− 1)-
dimensional linear subspace.

Parallelism is an equivalence relation and all parallels to a given subspace
partition the set of points. An automorphism of A(V ) is a permutation of
V preserving containment and parallelism amongst affine subspaces. So g ∈
Sym(V ) belongs to the group Aut(A(V )) of all automorphisms of A(V ) if and
only if, for each pair (X,Y ) of affine subspaces of A(V ), we have gX ⊆ gY if
X ⊆ Y and gX ‖ gY if X ‖ Y .

Example 3.1.2 Consider the field F3 of order 3. The affine space of A(F2
3)

is also called the affine plane of order 3. It has nine points, twelve lines, and
four classes of parallel lines. See Figure 3.1.

02 12 22

01 11 21

00 10 20

Fig. 3.1. The affine plane of order 3. Only three of the four parallel classes of lines
are drawn: the three vertical lines are missing.

Definitions 3.1.3 If Y is a coset of a linear subspace of V of dimension
d, then we say that Y is of dimension d as well. In particular, A(V ) has
dimension dim (V ). We write dim (Y ) for d. The empty set has dimension
−1. An affine subspace of dimension 0 or 1, respectively, is a singleton (i.e.,
consists of a single point) or an affine line, respectively.

If {Si}i∈J is a collection of affine subspaces of A(V ), the intersection
∩j∈JSj is again an affine subspace. Thus, it makes sense to introduce, for
any subset X of V , the subspace 〈X〉 generated (or spanned) by X as the
intersection of all affine subspaces containing X .

Any three points of A(V ) not on a line are in a unique affine plane, and
so they span an affine plane. More generally, if X is a set of n+ 1 points not
lying in an (n− 1)-dimensional affine space, then dim 〈X〉 = n.
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We describe the important automorphisms of A(V ). The group T(V ) of
all translations of V is a subgroup of Aut(A(V )). For v ∈ V , we write tv to
denote the translation by v:

tvx = x+ v (x ∈ V ).

A non-trivial translation can be characterized as an automorphism of A(V )
fixing each parallel class and fixing no point. Consequently, if dimV ≥ 2,
then T(V ) is a normal subgroup of Aut(A(V )).

Proposition 3.1.4 Let V be a vector space. The subgroup of Aut(A(V ))
generated by T(V ) and GL(V ) is a semi-direct product with normal subgroup
T(V ).

Conjugation of an element g ∈ GL(V ) by tb is given by

tbgt−b = tv−g(v)g.

Proof. As each element of GL(V ) fixes 0 and each non-trivial element of
T(V ) does not, the intersection of T(V ) and GL(V ) is trivial.

Suppose x, a ∈ V . If g ∈ GL(V )), then

gtag
−1(x) = g(g−1x+ a) = g(g−1x) + ga = tgax, (3.1)

whence gTg−1 ⊆ T . The first assertion follows. A similar computation shows
the final assertion. tu

Definitions 3.1.5 The subgroup of Aut(A(V )) generated by T(V ) and
GL(V ), usually denoted by AGL(V ), is called the affine linear group of V .

Example 3.1.6 Let Fq be the field of order q = pm where p is a prime
number and m a non-negative integer. Then it is known that Aut(Fq) is a
cyclic group of order m, generated by the mapping Fq → Fq , x 7→ xp (called
a Frobenius automorphism).

If V = Fn
q , then T(V ) has order qn, and GL(V ) has order (qn − 1)(qn −

q)(qn − q2) · · · (qn − qn−1); see Exercise 1.8.1. We state without proof that,
if n ≥ 2, then Aut(A(V )) has order

mqn
n−1∏

i=0

(qn − qi).

In particular, the affine plane of order 3 (Example 3.1.2) has a group of
automorphisms of order 432, which coincides with AGL(V ).

Special elements of AGL(V ) are affine reflections.
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Definition 3.1.7 An affine reflection on a real affine space A(V ) is an el-
ement of AGL(V ) of order 2 fixing an affine hyperplane. The fixed affine
hyperplane is also called its mirror .

Exercise 3.4.3 gives an explicit description of an arbitrary affine reflection.

3.2 Groups generated by affine reflections

Any group G generated by a set {ρi | i ∈ [n]} of involutions is a homomorphic
image of a Coxeter group W : simply take the Coxeter matrix of type M =
(mij)i,j∈[n], where mij is the order of ρiρj and apply Theorem 1.2.4. In this
section it is shown that, for G a subgroup of AGL(V ) generated by certain
affine reflections, this surjective homomorphism is actually an isomorphism.

Example 3.2.1 Consider the Coxeter diagram B3 of the cube and the Eu-
clidean space R3. Let Γ be the cube whose vertices are the points all of whose
coordinates are ±1. Construct the barycentric subdivision into triangles of
the surface spanned by the faces of the cube. The triangles found in this way
will be called chambers . Each chamber determines a unique vertex, edge, and
face of Γ . We fix the chamber c of Γ associated with the vertex v1 = (1, 1, 1),
the edge v2 = {v1, (1,−1, 1)}, the face v3 = v2 ∪ {(1, 1,−1), (1,−1,−1)}.
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Fig. 3.2. The chambers of the Coxeter group of type B3 drawn on the cube, with
one chamber singled out.

In Figure 3.2, we have drawn the cube as the set of points (±1,±1,±1).
The axes are chosen so that the positive x-axis and y-axis are horizontal,
with the former pointing toward us and the latter to the right. The positive
z-axis goes up. Now c corresponds to the chamber at the right hand top side
of the left face. The chamber c determines three reflections ρ1, ρ2, ρ3 leaving
Γ invariant and generating the group G of 48 isometries of Γ . Here ρi is the
reflection stabilizing vi+1 and vi+2 (indices mod 3). They are given by the
matrices
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


1 0 0
0 −1 0
0 0 1


 ,




1 0 0
0 0 1
0 1 0


 ,




0 0 1
0 1 0
1 0 0


 , respectively.

The 48 transforms of the chamber c represent the 48 chambers of Γ and form
a regular W (B3)-orbit.

For arbitrary groups generated by affine reflections, we will be looking for
a set of domains similar to the above 48 chambers on which the group acts
regularly.

Definition 3.2.2 If a group G acts on a set E, then a subset P of E is called
a prefundamental domain for G if P 6= ∅ and P ∩ gP = ∅ for all g ∈ G\{1}.

Thus, the existence of a prefundamental domain for G acting on E implies
that the action of G on E is faithful. Observe that a prefundamental domain
need not quite be what is classically called a fundamental domain as it is not
required that the domain be connected or contain a member of each G-orbit
in E.

Example 3.2.3 Let m ∈ N, m ≥ 2. Consider the two vectors α1 = (
√

2, 0)>

and α2 =
√

2(− cos(π/m), sin(π/m))> in Euclidean space R2 with standard
inner product. These two vectors have squared norm 2 and make an angle
of π(1− 1/m). The orthogonal reflections ρ1 and ρ2 (cf. Exercise 3.4.5) with
roots α1 and α2, respectively, generate the dihedral group G of order 2m.
The product ρ1ρ2 is a rotation with angle 2π/m. So there is an isomorphism
γ : W (M) → G where M is the Coxeter matrix of size 2 with off-diagonal
entry m, such that γ(si) = ρi (i = 1, 2). The two open half-planes A1 and A2,
where Ai = {x ∈ R2 | x>αi > 0} meet in a cone A12 bounded to the left by
R≥0(0, 1)> and to the right by R≥0(sin(π/m), cos(π/m))>. These half-lines
make an angle of π/m and A12 is a prefundamental domain for G.

A characteristic property concerning the length l(w) of an element of w
of W (M) with respect to {s1, s2} that we will use later is the following.

l(siw) < l(w) ⇔ γ(w)A12 ⊆ γ(si)Ai.

It is readily verified in a picture like Figure 3.3 by observing that l(w)
is the minimal number of reflection hyperplanes separating a vector in wA12

from a vector in A12.

Theorem 3.2.4 Let {Hi | i ∈ I} be a family of affine hyperplanes of the
affine space A(V ) of the real vector space V . For each i ∈ I, let Ai denote one
of the two open half-spaces determined by Hi and write A =

⋂
i∈I Ai. Assume

that A 6= ∅. Furthermore, for each i ∈ I, let ρi be an affine reflection whose
mirror in A(V ) is Hi. Assume further that for i 6= j in I, the intersection
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A

A

2

1

Fig. 3.3. A prefundamental domain for the dihedral Coxeter group of order 16.

Aij = Ai ∩ Aj is a prefundamental domain for the subgroup Gij of AGL(V )
generated by ρi and ρj . Then the following statements hold.

(i) A is a prefundamental domain for the subgroup G of AGL(V ) generated
by the ρi, i ∈ I.

(ii) (G, {ρi | i ∈ I}) is a Coxeter system of type M = (mij){i,j∈I}, where
mij is the order of ρiρj . In particular, G ∼= W (M).

Proof. Denote by M the Coxeter matrix (mij)i,j∈I , where mij is the order
of ρiρj , by (W,S) the corresponding Coxeter system, and by γ : W → G, the
homomorphism mapping si ∈ S onto ρi of Theorem 1.2.4. Then γ establishes
an action of W on A(V ). We shall often write wX rather than γ(w)X if
w ∈W and X ⊆ A(V ).

Denote by l the length function of the Coxeter system of (ii); cf. Definition
2.1.7. Here is a claim for each q ∈ N.

(Pq): For all i ∈ I and w ∈ W with l(w) ≤ q, the domain wA is
contained in either Ai or siAi; in the latter case l(siw) = l(w) − 1.

We show that the truth of (Pq) for all q implies (i) and (ii). As for (i), assume
that w ∈W satisfies A∩wA 6= ∅. Then, for all i, we have Ai∩wA 6= ∅ and so,
by (Pq) for q = l(w), as Ai∩siAi = ∅, we have wA ⊆ Ai. Hence wA ⊆ A. But
the assumption on w also implies w−1A∩A 6= ∅, so that, similarly, w−1A ⊆ A,
and A ⊆ wA. Consequently A = wA. Moreover, siwA = siA ⊆ siAi; by (Pq)
with q = l(siw), this yields l(s2iw) = l(siw) − 1, i.e., l(siw) = l(w) + 1 for
all i ∈ I . This means that w is the identity. Thus (i) holds for W (instead
of G) and hence also for G. The argument also shows that the kernel of the
homomorphism γ is trivial, so W is isomorphic to G and (ii) follows.

We next pursue the proof of (Pq). We proceed in four steps, and use induction
on q.
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Fig. 3.4. The domains corresponding to the group generated by two affine reflec-
tions in the plane with parallel fixed lines. We have written r instead of ρ1, s instead
of ρ2, H instead of H1 and K instead of H2. Observe that 〈r, s〉 = D∞.
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Fig. 3.5. The domains corresponding to the group generated by two affine reflec-
tions in the plane with intersecting fixed lines. We have written r instead of ρi, s
instead of ρj , H instead of Hi and K instead of Hj . Observe that 〈r, s〉 = D2m,
where m is the order of rs.

Step 1. (Pq) holds if I = {i, j}.
Put r = ρi and s = ρj . For (Pq) distinguish the cases Hi ‖ Hj and Hi ‖/ Hj .
In the first case, the assumption that Aij is a prefundamental domain for Gij

implies that A is the set of points strictly between Hi and Hj . Then sA ⊆ Ai,
rA ⊆ Aj , srA ⊆ sAj , etc. Now, it is clear from Figure 3.4 how to finish the
proof of (Pq).

In the second case, Hi ∩Hj is a subspace of codimension 2 and Figure 3.5
shows how to establish (Pq).

Step 2. For each pair i, j ∈ I , the group Gij satisfies the hypotheses of the

theorem.

This is obvious.

Thus, in view of Step 1, we have (Pq) for every choice of Gij instead of
G. We proceed by induction on q. For q = 0, the claim (Pq) is trivial.

Step 3. Suppose (Pq) for some q ≥ 1. Then, for each w ∈ W with l(w) ≤ q
and i ∈ I , we have l(siw) < l(w) if and only if wA ⊆ siAi; and also l(siw) >
l(w) if and only if wA ⊆ Ai.

For, l(siw) = l(w)−1 implies l(si(siw)) = l(siw)+1, so (Pq−1) gives siwA ⊆
Ai. The assertion now follows from (Pq).
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Step 4. (Pq) implies (Pq+1).

Let w ∈ W with l(w) = q + 1 and take i ∈ I . Choose j ∈ I and w′ ∈ W
such that w = sjw

′ and l(w′) = q. By (Pq) and the observation at the
beginning of the proof, w′A ⊆ sjAj and l(sjw

′) = l(w′) + 1. In particular,
wA = sjw

′A ⊆ Aj . If j = i, then we are done.
Suppose j 6= i. By Lemma 2.2.3, there exist u ∈ 〈si, sj〉 and v ∈ {i,j}W

such that w′ = uv and l(w′) = lij(u) + l(v) = l(u) + l(v). Now v ∈ {i,j}W
implies l(siv) > l(v) and l(siv) > l(v). By Step 3, this gives vA ⊆ Aij , so
w′A ⊆ uAij . Then wA = sjw

′A ⊆ sjuAij . Observe that lij(sju) ≤ lij(u) +
1 ≤ l(w′) + 1 = q+ 1. By Step 2, (Pq+1) holds for sju ∈ 〈si, sj〉, so sjuAij is
contained in either Ai or siAi, and in the latter case, lij(sisju) = lij(sju)−1.
In particular, wA ⊆ Ai or wA ⊆ siAi, which is the first statement of (Pq+1).
If wA ⊆ siAi, then wA ⊆ sjuAij ⊆ siAi, and

l(siw) = l((sisju)(u
−1w′)) ≤ l(sisju) + l(u−1w′)

≤ lij(sisju) + l(w′) − lij(u) (see above)

≤ lij(sju) − 1 + q − lij(u) ≤ q .

Since l(w) = q + 1, we find l(siw) = q = l(w) − 1 and so (Pq+1) holds. tu

Corollary 3.2.5 Retain the conditions of Theorem 3.2.4 and let γ : W (M) →
G be the isomorphism found in the theorem. Then, for all i, j ∈ I and w ∈ W ,
the following assertions hold.

(i) Either γ(w)A ⊆ Ai and l(siw) = l(w) + 1,
or γ(w)A ⊆ γ(si)Ai and l(siw) = l(w) − 1.

(ii) If i 6= j, there exists wij ∈ 〈si, sj〉 such that γ(w)A ⊆ γ(wij)Aij and
l(w) = l(w−1

ij w) + l(wij).

Proof. Part (i) follows from Step 3 of the proof of Theorem 3.2.4. As for
(ii), by Lemma 2.2.3(ii), lij and l coincide on 〈si, sj〉, so, the corollary follows
directly from (i). tu

Examples 3.2.6 (i). With the notation of Example 3.2.1, the group of 48
isometries of the cube is isomorphic to the Coxeter group W (B3). Here A is a
cone whose apex is the origin and whose radii run through the small triangle
that bounds the chamber c, see Figure 3.2.

(ii). Each of the convex regular polytopes of a Euclidean space gives rise to a
group of isometries that is a Coxeter group. As a result, the Coxeter groups
of the types represented in Table 3.1 are finite; their orders can be computed
by a count of chambers, using induction on n, in the same way as in (i). The
diagrams as yet unexplained are:
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Table 3.1. Coxeter diagrams of some finite reflection groups related to polytopes

M |W (M)| restriction
An (n + 1)! n ≥ 1

Bn = Cn 2n(n!) n ≥ 2
F4 24 · 48 = 1152
H3 120
H4 120 · 120 = 14400

I
(m)
2 2m m ≥ 2

Bn : ◦
1

◦
2
· · · · · · ◦

n−2
◦

n−1

4 ◦
n

F4 : ◦
1

◦
2

4 ◦
3

◦
4

H4 : ◦
1

◦
2

◦
3

5 ◦
4

(ii). Each of the tilings of a Euclidean space by regular convex polytopes gives
rise to an infinite group of isometries which is a Coxeter group. The diagrams
of these infinite Coxeter groups are as in Table 3.2. We have included the tiling
of R by unit intervals.

Table 3.2. Coxeter diagrams of some infinite reflection groups related to tilings

name diagram restriction

eA1 ◦ ∞ ◦

eB2 = eC2 ◦ ◦ ◦

eBn ◦

◦

◦ ◦ · · · · · · ◦ ◦ ◦ n ≥ 3

eCn ◦ ◦ ◦ · · · · · · ◦ ◦ ◦ n ≥ 3

eF4 ◦ ◦ ◦ ◦ ◦

eG2 ◦ ◦ 6 ◦

3.3 Linear reflection representations

In this section, Theorem 3.2.4 will be applied to derive that the reflection rep-
resentation is faithful. However, the prefundamental domain will be used for
the contragredient representation rather than the reflection representation.
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Definition 3.3.1 If ρ : G → GL(V ) is a linear representation on a vector
space V , then the contragredient representation ρ∗ is defined by

ρ∗gf = (v 7→ f(ρ−1
g v))

for all f ∈ V ∗, g ∈ W .

It is readily checked that ρ∗ is also a linear representation of G.

Example 3.3.2 (The infinite dihedral group) Let (W,S) be the Cox-
eter system of rank n = 2 with Coxeter matrix determined by m12 = ∞. The
linear representation ρ of W occurs in V = R2. On the basis {e1, e2},

B(x, y) = 2x1y1 + 2x2y2 − 2x1y2 − 2x2y1 = 2(x1 − x2)(y1 − y2),

whence Rad(B) = {x ∈ V | x1 = x2}. Moreover,

ρ1 =

(
−1 2
0 1

)
and ρ2 =

(
1 0
2 −1

)

fix all points of Rad(B). There is no convenient choice for A as in Theorem
3.2.4. However, ρ has a contragredient representation ρ∗ on the dual vector
space V ∗ which behaves much better. In matrix form, with respect to a dual
basis (fi)i of (ei)i (that is, fi(ej) = 1 if i = j and 0 otherwise), we have
ρ∗g = (ρg)

−> and so

ρ∗1 =

(
−1 0
2 1

)
and ρ∗2 =

(
1 2
0 −1

)
.

Let a standard domain be represented by the set A of elements of V ∗ which
take strictly positive values on e1 and e2, i.e., the set of all (a, b)> ∈ R2 with
a > 0 and b > 0. Then the transforms ρ∗gA of the closure A of A, cover
an open half-plane of V ∗ bounded by the line x1 + x2 = 0 and the group
acts regularly on the set of all those transforms, i.e., A is a prefundamental
domain for this group; see Figure 3.6.

Example 3.3.3 (The finite dihedral groups) Let us consider once more
the case n = 2 and m = m12 < ∞. Then B is positive definite and the
matrices of ρ1 and ρ2 in the reflection representation with respect to e1, e2
are

for ρ1 :

(
−1 2 cos(π/m)
0 1

)
, for ρ2 :

(
1 0

2 cos(π/m) −1

)
.

On the other hand, in Euclidean space R2 with standard inner product (·, ·)
and standard orthonormal basis ε1, ε2, we can take the vectors a = ε1 =
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... ...rsrA rsA rA A sA srA srsA

Fig. 3.6. The domain A and its transforms under ρ∗W .

(1, 0)> and b = (− cos(π/m), sin(π/m))> of unit length which make an angle
− cos(π/m) and consider the corresponding reflections ra, rb. Observe that
the two pairs of reflections are actually the same up to a coordinate trans-
formation sending the standard basis ε1, ε2 to

√
2a,

√
2b. In other words,

B = 2

(
1 − cos(π/m)
0 sin(π/m)

)>(
1 − cos(π/m)
0 sin(π/m)

)
.

In Example 2.3.4, ρ>i = ρi for all i, whence ρ = ρ∗.

In general, for a Coxeter system (W,S) of type M and the corresponding
reflection representation ρ : W → GL(V ), we will consider the contragredient
representation ρ∗ (see Definition 3.3.1) to prove that ρ is faithful. This is
justified by the following result.

Lemma 3.3.4 Kerρ = Ker ρ∗. In particular, ρ is faithful if and only if ρ∗ is
faithful.

Proof. This is Exercise 3.4.7. tu

For v ∈ V , set Av = {x ∈ V ∗ | x(v) > 0}. This is an open half-space in
V ∗.

Theorem 3.3.5 Let ρ : W → GL(V ) be the reflection representation. Then,
in V ∗, the half-spaces Ai = {x ∈ V ∗ | x(ei) > 0} and the linear transforma-
tions ρ∗i ∈ GL(V ∗) satisfy the following conditions.

(i) For each, i ∈ [n], the transformation ρ∗i is a reflection on V ∗ and Ai

and ρ∗iAi are the half-spaces separated by its mirror.
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(ii) For i, j in [n] with i 6= j, the intersection Aij = Ai ∩ Aj is a prefun-
damental domain for the subgroup Gij of AGL(V ) generated by ρ∗i and
ρ∗j .

(iii) The intersection
⋂

i∈[n]Ai 6= ∅ is a prefundamental domain for the sub-
group G acting on V ∗.

(iv) ρ is faithful.

Proof. (i) is straightforward: for f ∈ V ∗ and i ∈ [n], put a = B(·, ei) and
φ = (h 7→ h(ei)). Then

ρ∗i f = f − f(ei)B(·, ei) = ra,φf,

with φ(a) = B(ei, ei) = 2, so the assertion follows from Exercise 2.4.9.

(ii). Let i, j ∈ [n] with i 6= j. Observe that Gij is the image under ρ∗ of
〈si, sj〉. Consider w ∈ 〈si, sj〉 with Aij ∩ ρ∗wAij 6= ∅. We will show w = 1. Set
U = Rei + Rej in V . There is a canonical surjective linear map π : V ∗ → U∗

obtained by restriction of each linear form f on V to U . The subgroup Gij

of AGL(V ) leaves U invariant, since each ρk leaves invariant every linear
subspace of V containing ek, and ei, ej ∈ U . Let σw be the restriction of ρw

to U , for w ∈ 〈si, sj〉. Write Kv = {x ∈ U∗ | x(v) > 0} for v ∈ U . Then
Kv = πAv . Inspection of Examples 3.2.3 and 3.3.3 gives that the assertion
holds if n = 2. Therefore, writing Ki = Kei

and Kij = Ki ∩Kj , we find that
Kij ∩ σ∗

wKij 6= ∅ implies w = 1.
Now f ∈ Aij ∩ ρ∗wAij 6= ∅ implies that f |U∈ πAij = Kij and f |U∈

πρ∗wAij = σ∗
wKij (see the analysis after the definition of ρ∗). Thus f |U∈

Kij ∩ σ∗
wKij and so w = 1.

(iii). The intersection
⋂

i∈[n]Ai 6= ∅ contains any linear form f taking the
value 1 on each ei, and so is non-empty. As we have seen before, the restriction
of ρ to a subgroup 〈si, sj〉 of w is faithful. In particular, ρ∗i ρ

∗
j has ordermij . In

view of (ii), we can apply Theorem 3.2.4 to conclude that (ρ∗W, {ρ∗i | i ∈ [n]})
is a Coxeter system of type M and that A is a prefundamental domain.

(iv). The proof of (iii) implies that ρ∗ is faithful. The assertion now follows
from Lemma 3.3.4. tu

Corollary 3.3.6 If (W,S) is a Coxeter system and J a subset of S, the
subgroup 〈J〉 of W is a Coxeter group with Coxeter system (〈J〉, J).

3.4 Exercises

Section 3.1

Exercise 3.4.1 A semi-linear transformation of a vector space V over a field
F is a bijective map g : V → V for which there is an automorphism σg of F

such that



3.4 Exercises 49

g(vλ+ wµ) = (gv)σg(λ) + (gw)σg(µ) (λ, µ ∈ F; v, w ∈ V ) . (3.2)

(a) Show that σg is uniquely determined by this equation; it is called the
automorphism of F induced by g.

(b) Let V = Fn and let σ ∈ Aut(F). Define g : V → V by gx = (σxi)i∈[n].
Verify that g ∈ Aut(A(V )).

(c) Prove that Aut(A(V )) = Sym(V ) if dim (V ) = 1.

(It can be shown that, if dim (V ) > 1, the group Aut(A(V )) is generated by
AGL(V ) and all transformations as in (b)).

Exercise 3.4.2 Let n ∈ N. Show that the affine group AGL(Fn) is isomor-
phic to a subgroup of GL(Fn+1).
(Hint: View the affine space A(Fn) as the affine hyperplane {x ∈ Fn+1 |
xn+1 = 1} of A(Fn+1) and extend the elements AGL(Fn) to elements of
AGL(Fn+1) fixing 0 ∈ Fn+1.)

Exercise 3.4.3 (Cited in Definition 3.1.7) Show that each affine reflection
is of the form tλara,φ for certain a ∈ V , φ ∈ V ∗, and λ ∈ R with φ(a) = 2;
see Exercise 2.4.9. Here, the mirror is {x ∈ V | φ(x) = λ}.

Section 3.2

Exercise 3.4.4 Let ρ : W (H3) → GL(V ) be the reflection representation of
W (H3).

(a) Show that the symmetric bilinear form B on V associated with ρ is
positive definite. Conclude that the image of W (H3) under ρ is a group of
isometries, that is, linear transformations preserving Euclidean distance.

(b) Find a W (H3)-orbit X of 12 vectors in V .
(c) Show that X is the set of vertices of a regular icosahedron in the Eu-

clidean space determined by V and B.

Exercise 3.4.5 (Cited in Example 3.2.3 and Remark 4.1.4) Let V be a real
vector space equipped with a symmetric bilinear form κ : V × V → R. A
reflection r ∈ GL(V ) is called an orthogonal reflection (with respect to κ)
if it preserves κ (in the sense that κ(rx, ry) = κ(x, y) for all x, y ∈ V ).
Prove that, for ra,φ as in Exercise 2.4.9 to be an orthogonal reflection, it is
necessary and sufficient that either κ(a, a) = 0 and a ∈ rad(κ) or κ(a, a) 6= 0
and φ = (x 7→ 2κ(a, a)−1κ(x, a)). In particular, if κ(a, a) 6= 0, there is a
unique orthogonal reflection with root a.

Exercise 3.4.6 Let W = W (F4).
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(a) Prove that the order of W is equal to 1152. Hint: study the permutation
representation on roots of reflections with norm 1 (this will be the subject
of the next lecture).

(b) Derive that W is a finite solvable group.
(Hint: Use the natural homomorphism W →W (A2 ∪̇A2).)

Section 3.3

Exercise 3.4.7 (Cited in Lemma 3.3.4) Prove Lemma 3.3.4.

Exercise 3.4.8 We continue Exercise 2.4.13, retaining the notation ρi for
i = 1, 2, 3 and writing M for the Coxeter diagram

◦
1

◦
2

∞ ◦
3
.

There it was shown that the map {s1, s2, s3} → {ρ1, ρ2, ρ3} extends to a
surjective group homomorphism ψ : W (M) → PGL(2,Z). Set V = R2.

(a) By V ⊗ V we denote the tensor product of V with itself. Prove that
there is a unique linear transformation σ ∈ GL(V ⊗ V ) of order 2 with
σ(x ⊗ y) = y ⊗ x for all x, y ∈ V .

(b) Let V 2+ be the subspace of V ⊗ V linearly spanned by f1 = e1 ⊗ e1,
f2 = 1

2 (e1 ⊗ e2 + e2 ⊗ e1), and f3 = e2 ⊗ e2 for a fixed basis e1, e2 of V .
Prove that V 2+ coincides with the subspace of V ⊗ V consisting of the
fixed vectors of σ.

(c) Prove that there is a unique group homomorphism

φ : GL(V ) → GL(V ⊗ V )

determined by φ(g)(x ⊗ y) = (gx) ⊗ (gy) for x, y ∈ V .
(d) Show that for g ∈ GL(V ), the map φ(g) leaves invariant V 2+ and satisfies

B(φ(g)x, φ(g)y) = det(g)2B(x, y) (x, y ∈ V 2+),

where B is the symmetric bilinear form on V 2+ given by the matrix



0 0 2
0 −1 0
2 0 0




on the basis f1, f2, f3.
(e) Verify that the respective images of ρ1, ρ2, ρ3 under φ are




0 0 1
0 1 0
1 0 0


 ,




1 −1 1
0 −1 2
0 0 1


 ,




1 0 0
0 −1 0
0 0 1


 ,

and that these transformations are orthogonal reflections with respect to
B (see Exercise 3.4.5) on V 2+ with respective roots (1, 0,−1)>, (1, 2, 0)>,
and (0, 1, 0)>.
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(f) Prove that φ(〈ρ1, ρ2, ρ3〉) is a Coxeter group of type M and deduce that
φ◦ψ is an isomorphism. Deduce that PGL(2,Z) is isomorphic to W (M).

3.5 Notes

Section 3.1. For a synthetic approach to affine space, see [6, Chapter 5].
Section 3.2. Theorem 3.2.4 is due to Coxeter, who was the first to state

results of this kind, and Tits, who proved the theorem in its full generality.
Section 3.3. For explorations of polytopes, see Coxeter’s book [12].



52 3. Coxeter groups are linear



4. The root system

In this chapter, we study Coxeter groups as permutation groups and derive
some consequences regarding special subgroups and the defining presentation
by generators and relations. Throughout, we let M be a Coxeter matrix of
size n.

Let (W,S) be a Coxeter system of type M with S = {s1, . . . , sn}. We
think of S as a totally ordered set (by si < sj if and only if i < j) and
frequently identify it with [n].

Our starting point is the reflection representation ρ : W → GL(V ), which
was proved faithful in Theorem 3.3.5. Here, the standard basis e1, . . . , en of
V = Rn consists of roots of the generating reflections ρ(si) = ρi described
in (2.3). Moreover the image of ρ lies in O(V,B), the stabilizer in GL(V ) of
the symmetric bilinear form B determined by (2.2). As a result we can view
W as a group of real invertible n × n matrices generated by n orthogonal
reflections with respect to B (cf. Exercise 3.4.5).

In Section 4.2 we use the root system to derive a characterization of Cox-
eter groups in terms of a property of minimal expressions of group elements
with respect to a generating set of involutions, called the exchange condition.

Finally, Section 4.3 uses the exchange condition to provide a solution to
the word problem for Coxeter groups. This solution is not efficient but quite
practical in hand computations.

4.1 Root systems

Throughout this section, (W,S) is a Coxeter system of type M . Much like
Proposition 1.5.3 (but without the finiteness restriction), we will single out
a union of orbits of vectors in the reflection representation space V on which
W acts faithfully, namely the set Φ below.

Definition 4.1.1 The subset Φ = ∪s∈Sρ(W )es of V is the called the root
system of W . The subsets

Φ+ = Φ∩ (R≥0e1 + · · ·+ R≥0en) and Φ− = Φ∩ (R≤0e1 + · · ·+ R≤0en)

are called the set of positive roots and the set of negative roots of W , respec-
tively.
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For the action of w ∈ W on v ∈ V , we often write wv rather than
ρ(w)v. Part (ii) of the following lemma justifies the name root system; recall
Definition 2.3.1.

Proposition 4.1.2 The root system of a Coxeter group W satisfies the fol-
lowing properties.

(i) W acts faithfully on Φ.
(ii) For w ∈ W and s ∈ S the vector wes ∈ Φ is a root of the orthogonal

reflection ρ(wsw−1) with respect to B.
(iii) Φ = Φ+ ∪̇Φ− and Φ− = −Φ+.
(iv) For w ∈W and s ∈ S we have wes ∈ Φ− if and only if l(ws) < l(w).
(v) If λ ∈ R and α ∈ Φ satisfy λα ∈ Φ, then λ = ±1.

Proof. (i). As Φ contains the basis (es)s∈S of V , this is immediate from the
fact (see Theorem 3.3.5) that ρ is faithful.

(ii). Since ρ(wsw−1) is a conjugate of ρ(s), it is an orthogonal reflection with
respect to B. Moreover wsw−1(wes) = wses = −wes, so wes is a root of
wsw−1.

(iii). Let Ai and A be as in Theorem 3.3.5. Then Φ+ = {x ∈ Φ | ∀f∈Af(x) ≥
0} and Φ− = {x ∈ Φ | ∀f∈Af(x) ≤ 0}.

Let w ∈ W and s ∈ S, so wes ∈ Φ. Since f(wes) = (w−1f)es for f ∈ V ∗,
we have wes ∈ Φ+ if and only if f ∈ As for each f ∈ w−1A, which is of course
equivalent to w−1A ⊆ As. Similarly, wes ∈ Φ− if and only if w−1A ⊆ sAs.
By Theorem 3.3.5 and Corollary 3.2.5, either w−1A ⊆ As and l(sw−1) =
l(w−1) + 1 or w−1A ⊆ sAs and l(sw−1) = l(w−1) − 1. Therefore Φ is the
union of Φ+ and Φ−. As 0 6∈ Φ this union is disjoint.

Finally, if wes ∈ Φ+, then −wes = wses ∈ Φ−, so −Φ+ ⊆ Φ−. Similarly
−Φ− ⊆ Φ+, so Φ− ⊆ −Φ+. Therefore Φ− = −Φ+. This establishes (iii).

(iv). By what we have seen in the proof of (iii), wes ∈ Φ− if and only if
l(sw−1) = l(w−1) − 1, which is equivalent to l(ws) = l(w) − 1; see Exercise
4.4.1. This proves (iv).

(v). Writing α = wes we find 2 = B(es, es) = B(wes, wes), so B(α, α) = 2
for each α ∈ Φ. Consequently, α, λα ∈ Φ gives λ22 = B(λα, λα) = 2,
and so λ = ±1. tu

Definition 4.1.3 In view of Proposition 4.1.2(ii), the members of the set
R = {wsw−1 | w ∈ W, s ∈ S} are called reflections of W or, to be more
precise, of (W,S).

Remark 4.1.4 By Proposition 4.1.2(iii), (v), each reflection of a Coxeter
group W has a unique positive root. Conversely, by Exercise 3.4.5, each
member of Φ+ is the positive root of a unique orthogonal reflection with
respect to B. In other words, if r, s ∈ S and v, w ∈ W satisfy wes = ver,
then wsw−1 = vrv−1.
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Fig. 4.1. The root system of the Coxeter group of type A2

For w ∈W and Φ the root system of W , we set

Φw := {α ∈ Φ+ | wα ∈ Φ−}. (4.1)

Corollary 4.1.5 Let w ∈ W with q = l(w) and let Φ be the root system of
W . If r1 · · · rq is a minimal expression for w, then

Φw = {rq · · · ri+1αi | i ∈ [q]},

where αi is the root of ri in Φ+. In particular,

l(w) = |Φw|.

Proof. Observe that the αi are in {e1, . . . , en}, as each ri ∈ S. Fix
a minimal expression r1 · · · rq of w. As l((rq · · · ri+1)ri) < l(rq · · · ri+1),
Proposition 4.1.2(iv) gives rq · · · ri+1αi ∈ Φ+. Also, as l((r1 · · · ri−1ri)ri) <
l(r1 · · · ri−1ri), Proposition 4.1.2(iv) givesw(rq · · · ri+1αi) = (r1 · · · ri−1ri)αi ∈
Φ−. This establishes {rq · · · ri+1αi | i ∈ [q]} ⊆ Φw.

Let γ ∈ Φw. It remains to show that γ belongs to {rq · · · ri+1αi | i ∈ [q]}.
If q = 0, then Φw = ∅ and the corollary is trivially true.

Suppose q = 1, so w = r1 = s ∈ S. Write γ =
∑

t∈S λtet with λt ≥ 0.
If γ 6= α1, there must be u ∈ S distinct from s with λu > 0; cf. Proposition
4.1.2(v). But then sγ =

∑
t∈S λtset = µses +

∑
t∈S\{s} λtet for some µs ∈ R.

The coefficient of eu in sγ is again λu > 0, so sγ ∈ Φ+ by Proposition
4.1.2(iii). This means γ 6∈ Φr1

and so Φr1
= {α1}, as required.

We proceed by induction on q. Assume q > 1 and γ ∈ Φw. Since wγ ∈ Φ−

and γ ∈ Φ+, there is a maximal i ≤ q such that γ, rqγ, . . . , ri+1 · · · rqγ ∈ Φ+

and ri · · · rqγ ∈ Φ−. But then ri+1 · · · rqγ lies in Φri
, which we have seen

coincides with {αi} in the previous paragraph. Thus, ri+1 · · · rqγ = αi and
γ = rq · · · ri+1αi. This proves that the two sets Φw and {rq · · · ri+1αi | i ∈ [q]}
coincide.

As a consequence |Φw| ≤ q. To prove equality, assume, that for certain
i, j with i < j we have rq · · · ri+1αi = rq · · · rj+1αj . Then αi = ri+1 · · · rjαj .
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As ri+1 · · · rj is a minimal expression, Proposition 4.1.2(iv) shows that the
right hand side is in Φ−, a contradiction with αi ∈ Φ+. Therefore, all
elements of Φw are distinct, so |Φw| = q. Hence the corollary. tu

Example 4.1.6 Let M = An−1. Then B(ei, ej) = −1 if |i − j| = 1 and
B(ei, ej) = 0 if |i − j| > 1. Let ε1, . . . , εn be the standard basis of Rn and
(·, ·) the standard inner product that makes the standard basis orthonormal.
A convenient realization of the reflection representation is furnished by the
vectors ei = εi − εi+1 (i ∈ [n− 1]). These span the subspace V = Rn ∩ {ε1 +
· · · + εn}⊥ of Rn and B can be identified with the restriction of (·, ·) to V .
The root system Φ for W = W (An−1) can be partitioned into

Φ+ = {εi − εj | 1 ≤ i < j ≤ n} and

Φ− = {εi − εj | 1 ≤ j < i ≤ n}.

Each element in Φ+ is of the form εi − εj = ei + · · · + ej for certain 1 ≤
i < j ≤ n. Corollary 4.1.5 gives that the length of w ∈ Symn is equal to the
number of pairs (i, j) in [n] × [n] with i < j and w i > w j.

4.2 The exchange condition

We first derive an abstract property of Coxeter groups that is very powerful.
Next we explain its power by showing that it is a characterizing property for
Coxeter groups.

Definition 4.2.1 Let (W,S) be a pair consisting of a group W and a gener-
ating set S forW . The exchange condition for (W,S) is the following property.

If s, r1, . . . , rq ∈ S satisfy w = r1 · · · rq and q = l(w) ≥ l(sw), then
there is j ∈ [q] such that sr1 · · · rj−1 = r1 · · · rj .

Theorem 4.2.2 If (W,S) is a Coxeter system, then it satisfies the exchange
condition.

Proof. As the parities of l(sw) and l(w) differ (cf. Exercise 1.8.14), l(sw) ≤
l(w) implies l(sw) = l(w) − 1. By Corollary 4.1.5 and |Φsw| = l(sw) =
q − 1 < q = |Φw|, there is β ∈ Φw such that swβ ∈ Φ+. Moreover, if r1 · · · rq
is a minimal expression for w, then Φw = {rq · · · ri+1αi | i ∈ [q]}, where αi is
the root of ri in Φ+. Thus, for β, there is j ∈ [q] with β = rq · · · rj+1αj . Now
−wβ ∈ Φ+ and swβ ∈ Φ−, so −wβ ∈ Φs = {αs}, so

αs = −wβ = −(r1 · · · rq)(rq · · · rj+1)αj = −r1 · · · rjαj = r1 · · · rj−1αj ,

which implies s = (r1 · · · rj−1)rj(rj−1 · · · r1) by Remark 4.1.4, and establishes
sr1 · · · rj−1 = r1 · · · rj−1rj , as required. tu
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In order to prove the converse, we need the following useful lemma.

Lemma 4.2.3 Suppose that (W,S) is a pair consisting of a group W and a
set S of involutions generating W that satisfies the exchange condition. Let
M be the matrix over S (assuming some total ordering on S) whose r, s-entry
mrs is the order of rs. Suppose that F is a monoid affording a map σ : S → F
such that for any two distinct r, s ∈ S we have

σ(r)σ(s)σ(r) · · ·︸ ︷︷ ︸
mrs factors

= σ(s)σ(r)σ(s) · · ·︸ ︷︷ ︸
mrs factors

if mrs <∞.

Then σ can be extended to a map W → F , also called σ, such that σ(w) =
σ(r1) · · ·σ(rq) whenever r1 · · · rq is a minimal expression for w.

Proof. Recall from Definition 2.1.1 that M(S) denotes the free monoid on
S. Clearly, σ can be extended to a homomorphism of monoids M(S) → F .
Thus, for r = r1 · · · rq ∈ M(S), we have σ(r) = σ(r1) · · ·σ(rq).

For w ∈ W , let Dw be the set of all minimal expressions for w in M(S). We
want to show that σ(r) = σ(r′) for all r, r′ ∈ Dw. We proceed by induction
on l(w). If l(w) = 1, the exchange condition yields that |Dw| = 1, so this case
is trivial.

Assume q = l(w) > 1, and let r = r1 · · · rq and r′ = r′1 · · · r′q be two
minimal expressions in M(S) for w. Put r = r′1. We have l(rw) < q, so the
exchange condition gives rr1 · · · rj−1 = r1 · · · rj for some j ≤ q. We obtain
r′′ := rr1 · · · rj−1rj+1 · · · rq ∈ Dw. Comparing the first terms of r′ and r′′ and
applying the induction hypothesis to rw, we find σ(r′) = σ(r′′). If j < q, then,
comparing the last terms of r′′ and r and applying the induction hypothesis
to wrq , we find σ(r) = σ(r′′), and we are done.

It remains to consider the case where j = q. Then, replacing the pair r, r′ by
r′′, r, and using the same arguments, we obtain r′′′ = r1rr1 · · · rq−2 ∈ Dw

with σ(r′′′) = σ(r). Repeating this process, we arrive at u = r1rr1 · · ·
and v = rr1r · · · ∈ Dw, each word involving only r, r1 alternately, with
σ(u) = σ(r) and σ(v) = σ(r′), while w = rr1r · · · = r1rr1 · · · (q terms). Now,
by hypothesis, σ(u) = σ(v), and so σ(r) = σ(r′). In particular, the mapping
σ is constant on Dw for each w ∈ W , and hence well defined on W . tu

Theorem 4.2.4 Suppose that W is a group generated by a subset S of in-
volutions.

(i) The pair (W,S) is a Coxeter system if and only if it satisfies the ex-
change condition.

(ii) If (W,S) is a Coxeter system, then for each w ∈ W , there is a unique
subset Sw of S such that Sw = {r1, . . . , rq} for every minimal expression
r1 · · · rq for w.
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Proof. (i). By Theorem 4.2.2, a Coxeter system satisfies the exchange con-
dition. Suppose that (W,S) satisfies the exchange condition. Let M be the
matrix over S as given in Lemma 4.2.3. Denote by (W,S) the Coxeter system
of type M . We shall apply the lemma to the canonical mapping r 7→ r from
S to S, taking F to be the monoid underlying the group W . By definition of
(W,S), this mapping satisfies the conditions of the lemma. Hence we obtain a
mapping w 7→ w from W to W such that w = r1 · · · rq whenever w = r1 · · · rq
and q = l(w). We claim that w 7→ w is a homomorphism.

First, we show that sw = sw for all s ∈ S, w ∈ W . If l(sw) = q + 1,
we have sw = s r1 · · · rq = sw. If l(sw) ≤ q, the exchange condition gives
some j ∈ [q] with sr1 · · · rj−1 = r1 · · · rj , so sw = r1 · · · rj−1rj+1 · · · rq , and
l(sw) = q − 1. As r2j = 1, we find

sw = r1 · · · rj−1rj+1 · · · rq = r1 · · · rj−1r
2
jrj+1 · · · rq

= r1 · · · rj rjrj+1 · · · rq = sr1 · · · rj−1 rjrj+1 · · · rq

= s r1 · · · rj−1 rjrj+1 · · · rq = s r1 · · · rq
= sw.

Next, we derive u v = u v for all u, v ∈ W by induction on l(u). The case
l(u) = 1 has just been treated. Assume l(u) > 1. Then u = s u′ for some
s ∈ S, u′ ∈W with l(u′) < l(u), so

u v = s(u′v) = s u′v = s(u′ v) = (s u′)v = su′ v = uv,

proving that w 7→ w is a homomorphism indeed. Finally the homomorphism is
clearly surjective, and, since W is freely generated by the relations (r s)mrs =
1 (r, s ∈ S), it must be an isomorphism.

(ii). We now apply the lemma to the map r 7→ {r} from S to the monoid 2S

of all subsets of S in which multiplication is given by set theoretic union (the
empty set is the unit). Since {r} ∪ {s} ∪ {r} ∪ · · · = {r, s}, the equality of
Lemma 4.2.3 is satisfied. Therefore, the map can be extended to a map w 7→
Sw such that Sw = {r1, . . . , rq} for every minimal expression r1 · · · rq of w. tu

Notation 4.2.5 For a subset T of S, the subgroup 〈T 〉 of W generated by
T is often denoted by WT . Thus, W∅ = {1} and WS = W .

Corollary 4.2.6 Let (W,S) be a Coxeter system. Suppose that J and K are
subsets of S.

(i) If w ∈WJ , then Sw ⊆ J . In particular, S ∩WJ = J .
(ii) WJ ∩WK = WJ∩K .
(iii) J ⊆ K ⇐⇒ WJ ⊆WK .

Proof. (i). If r1 · · · rq is a minimal expression for w, then rq · · · r1 is a minimal
expression for w−1, so, by (ii) of the theorem, Sw = Sw−1 . Furthermore, by
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the exchange condition, Srw ⊆ {r} ∪ Sw for any r ∈ S, so Svw ⊆ Sv ∪ Sw for
all v, w ∈ W . Hence {w ∈ W | Sw ⊆ J} is a subgroup of WJ containing J .
Consequently, WJ = {w ∈W | Sw ⊆ J}. Statement (i) follows directly.

(ii). If w ∈ WJ ∩WK , then by (i) the set Sw is contained in J ∩K. Hence
w ∈WJ∩K , and WJ ∩WK ⊆WJ∩K . The converse inclusion is obvious.

(iii). This is a direct consequence of (ii). tu

Recall the notions left-reduced and right-reduced from Definition 2.2.2.

Definition 4.2.7 Let J,K ⊆ S. Then JWK := JW ∩WK is called the set
of (J,K)-reduced elements.

Proposition 4.2.8 Let (W,S) be a Coxeter system and let J , K, L be sub-
sets of S. Then the following assertions hold.

(i) If w ∈ WKWL then there are x ∈ WK and y ∈ WL such that w = xy
and l(w) = l(x) + l(y).

(ii) WJ ∩WKWL = (WJ ∩WK)(WJ ∩WL).
(iii) For each w ∈W there is a unique d ∈ JWK of minimal length. The set

JWK consists of all such d for w ∈W .
(iv) For w ∈W and d ∈ JWK ∩WJwWK , each u ∈ WJwWK can be written

as u = xdy with x ∈WJ , y ∈ WK and l(u) = l(x) + l(d) + l(y).

Proof. (i). Suppose w = xy for certain x ∈ WK and y ∈ WL. Obviously,
l(x) + l(y) ≥ l(w). Let r1 · · · rt and rt+1 · · · rq be minimal expressions for
x and y, respectively, so q = l(x) + l(y). If q = l(w), we are done. Other-
wise, take the largest j ≤ t such that rj · · · rq is not a minimal expression.
Then, by Theorem 4.2.2 there is k ∈ {j + 1, . . . , q} such that rj · · · rq =
rj+1 · · · rk−1rk+1 · · · rq . If k ≤ t, then x = r1 · · · rj−1rj+1 · · · rk−1rk+1 · · · rt,
contradicting l(w) = t. Therefore k > t. Take x1 = r1 · · · rj−1rj+1 · · · rt and
y1 = rt+1 · · · rk−1rk+1 · · · rq . Then l(x1) + l(y1) = q − 2, x1 ∈ WK , y1 ∈ WL

whereas w = xy = x1y1, and we finish by induction on l(x) + l(y).

(ii). Clearly, (WJ ∩WK)(WJ ∩WL) ⊆WJ ∩WKWL. As for the converse, let
w ∈WJ ∩WKWL. Then, by (i), there are x ∈WK , y ∈ WL with w = xy and
l(x) + l(y) = l(w), so if r1 · · · rt and rt+1 · · · rq are minimal expressions for x
and y, respectively, then r1 · · · rq is a minimal expression for w. As w ∈WJ ,
Corollary 4.2.6(i) gives ri ∈ J for 1 ≤ i ≤ q so x = r1 · · · rt ∈ WJ and
similarly for y. This establishes w ∈ (WJ ∩WK)(WJ ∩WL).

(iii). Let d be an element of minimal length in WJwWK . Then, clearly,
WJwWK = WJdWK . Suppose u ∈ WJdWK . Then by the same kind of rea-
soning as in (i), we obtain that u = xdy with x ∈ WJ and y ∈ WK such that
l(u) = l(x)+ l(d)+ l(y). It follows that if l(u) = l(d), then u = d. This settles
uniqueness of d. Also, by minimality of l(d), we have d ∈ JWK . Conversely,
assume v ∈ JWK . Let d be the element of minimal length in WJvWK . Then
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v = xdy for certain w ∈ WJ , y ∈ WK with l(v) = l(x) + l(d) + l(y). If
l(x) > 0, then there is r ∈ J such that l(rx) < l(x). But then l(rv) < l(v)
contradicting v ∈ JWK . Hence l(x) = 0. Similarly, l(y) = 0. Consequently
v = d, proving that JWK is the set of all elements of minimal length in the
double coset they represent.

(iv). Follows from the proof of (iii). tu

Notation 4.2.9 For r, s ∈ S with mrs <∞, write

wts = rsr · · ·︸ ︷︷ ︸
mrs factors

∈ M(S),

and, using δ : M(S) →W (M) of Remark 2.1.6, put

wrs = δ(wrs).

Lemma 4.2.10 If l(sw) = l(tw) < l(w), then mst < ∞ and there is v ∈
{s,t}W with w = wstv and l(w) = mst + l(v).

Proof. By Lemma 2.2.3 there exists u ∈ 〈s, t〉 and v ∈ {s,t}W with w = uv
and l(w) = l(u) + l(v). It remains to show mst < ∞ and u = wst. Let
r1 · · · rk be a minimal expression for u and rk+1 · · · rq a minimal expression
for v, so r1 · · · rq is a minimal expression for w. As l(sw) < l(w), Theorem
4.2.2 shows the existence of j ∈ [q] with sr1 · · · rj = r1 · · · rj+1. If j > k,
then v′ = rk+1 · · · rjrj+2 · · · rq satisfies l(v′) < l(v) and sw = uv′, so
〈s, t〉v = 〈s, t〉v′, contradicting v ∈ {s,t}W . Therefore, j ≤ k and so
l(su) ≤ l(u). Similarly l(tu) ≤ l(u). By inspection of the dihedral group
〈s, t〉, it is readily verified that mst < ∞ and u = wst, as required. tu

4.3 Solution of the word problem

As another application of Lemma 4.2.3 we show how the word problem for
a Coxeter group can be solved. It is no longer a surprise that the word
problem for Coxeter groups can be solved as the faithful matrix representation
provides an easy solution. Nevertheless a solution within the framework of
words is still very useful.

Let (W,S) be a Coxeter system of type M , so W = W (M). Recall the
homomorphism of monoids δ : M(S) → W of Remark 2.1.6. For two words
a, b ∈ M(S), we shall write a b for the rewrite rule that allows us to replace
any occurrence of a in a word of M(S) by b. Recall Notation 4.2.9.

Theorem 4.3.1 Consider the following rewrite rules for words in M(S).
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wrs  wsr if mrs <∞
ss ε

Clearly, δ maps both sides of each rule to the same element of W (M). By
means of these rules,

(i) each word can be rewritten to a minimal expression;
(ii) every two minimal expressions of the same element of W (M) can be

transformed into each other.

Proof. (ii). Since the rules of the first kind are symmetric, they can be used
in both directions, and the relation ∼ on M(S) defined by r ∼ t if r can
be obtained from t by a series of rewrites of the first kind, is a congruence
relation on the monoid M(S); cf. Definitions 2.1.3.

Suppose r1 · · · rq and t1 · · · tq are two minimal expressions in M(S) of
w ∈ W . We wish to show that they are equivalent under ∼. If q = 0, this
is trivial. We proceed by induction on q and assume q > 0. If r1 = t1, we
apply the induction hypothesis to the two minimal expressions r2 · · · rq and
t2 · · · tq of r1w, and we are done. Therefore, we may assume r1 6= t1. Similarly,
rq 6= tq .

Put r = r1 and t = t1. As l(rw) = l(tw) < l(w), Lemma 4.2.10 implies
the existence of a minimal expression of the form wrtv of w. As wrt starts
with r, the previous paragraph gives r ∼ wrtv. Similarly, t ∼ wtrv, and we
are done, as obviously wrt ∼ wtr.

(i). Suppose r = r1 · · · rq is an expression in M(S) for w that is not minimal.
We show that r is congruent to an expression containing a subword ss for
some s ∈ S. This is trivially true if q ≤ 1. We proceed by induction and
assume q ≥ 2. In view of the induction hypothesis, we may assume that
r2 · · · rq is a minimal expression. Now Theorem 4.2.2 gives j ∈ {2, . . . , q} such
that r2 · · · rj and r1 · · · rj−1 are two minimal expressions for the same element
of W . By (ii), r2 · · · rj ∼ r1 · · · rj−1, and so (r2 · · · rj−1)rjrj(rj+1 · · · rq) =
(r2 · · · rj)(rj · · · rq) ∼ r. tu

Remark 4.3.2 Theorem 4.3.1 suggests the following solution of the word
problem:

I. Given a word s, compute the set H(s) of all its homogeneous rewrites
(those obtained by applying rule (i)). If one of these contains an oc-
currence ss for some s ∈ S, remove this occurrence and replace s by
the resulting element and recur. In this way we obtain a set H(r) of all
homegeneous rewrites of a minimal expression r.

II. Given two words s and r, apply I. to each so as to obtain two sets
H(r1) and H(t1) where r1 and t1 are minimal expressions of δ(r) and
δ(t), respectively. Now r and s represent the same element of W (M) if
and only if H(r1) = H(t1).
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The complexity of this procedure is governed by the size ofH(r). IfM = An−1

and r is a minimal expression of a particular (in fact, the longest) element of
W (M), then

|H(r)| =

(
n
2

)
!

1n−13n−25n−3 · · · (2n− 1)0
.

(We do not prove this.) So the complexity grows faster than exponentially.
On the other hand, the algorithm is practical for hand computations. For

example: 123123123123 ∈ M([3]) represents the identity in W (A3), as

123123123123 121323123123 121232123123 

112132123123 2132123123 2131213123 

2113213123 23213123 23231123 

232323 323323 3223 33 ε.

Here the underlining indicates the subword that is being rewritten in the next
step.

Example 4.3.3 If (W,S) is the Coxeter system of type An, thenW is doubly
transitive on W/WJ , where S = {s1, . . . , sn} and J = {s2, . . . , sn}. To see
this, we use the fact that W is doubly transitive on W/WJ if and only if
W consists of two double cosets with respect to WJ . Now WJ is a single
double coset and does not contain s1, so WJs1WJ is another. Therefore,
double transitivity of W on W/WJ is equivalent to W = WJ ∪WJs1WJ . In
view of Proposition 4.2.8(iii), this amounts to JW J = {1, s1}, so we need to
show that 1 and s1 are the only elements of JW J . If n = 1, then J = ∅ and
JW J = W = {1, s1}, so we are done.

Suppose n ≥ 2 and use induction on n. It suffices to show s1WJs1 ⊆
WJs1WJ ∪WJ . For, if this holds, then WJs1WJ ∪WJ is a subgroup of W
and so coincides with 〈WJ , s1〉 = W . Suppose, therefore, w ∈ s1WJs1. Then
there is v ∈ WJ such that w = s1vs1. By the induction hypothesis applied

to v we find a, b ∈ WJ\{s2} and v1 ∈ J\{s2}W
J\{s2}
J = {1, s2} such that

v = av1b. Now either v1 = s1 and w = s1abs1 = as21b = ab ∈ WJ or v1 = s2
and w = s1as2bs1 = as1s2s1b = as2s1s2b ∈WJs1WJ , a contradiction.

4.4 Exercises

Section 4.1

Exercise 4.4.1 (Cited in proof of Proposition 4.1.2) Prove the following
extension to Exercise 2.4.8: l(w−1) = l(w) and Φw−1 = −wΦw for each w in
a Coxeter group W .

Exercise 4.4.2 Let v and w be elements of the Coxeter group W . Prove
that l(vw) = l(v) + l(w) holds if and only if Φw ⊆ Φvw.
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Exercise 4.4.3 Let (W,S) be a Coxeter system of type M and rank n. For
j ∈ [n], define pj to be the number of elements w ∈ W such that {s ∈ S |
wes ∈ Φ+} has size j.

(a) Prove that, for M = An (so W ∼= Symn+1), the number pj is equal to
the Eulerian number 〈n + 1; k〉, giving the number of permutations on
n+ 1 letters having exactly k permutation ascents. Here, an ascent of a
permutation w on n+1 letters is a number i ∈ [n] such that wi < w(i+1).

(b) For J ⊆ S, define pJ to be the number of elements w ∈ W such that
{s ∈ S | wes ∈ Φ+} = J . Prove that pJ =

∑
K⊇J (−1)|K|+|J||W/WK | for

each J ⊆ S.
(Hint: Establish first |{w ∈W | {s ∈ S | wes ∈ Φ+} ⊇ J}| = |W/WJ |.)

(c) Show that
n∑

j=0

pjt
j =

∑

K⊆S

|W |(t− 1)|K|

|WK | .

Exercise 4.4.4 For a set X , denote by P(X), the power set of X , that is,
the set of all subsets of X .

(a) Prove that the map φ : W → P(Φ+) given by φ(w) = Φw for w ∈ W is
injective.

(b) Show that each Φw is closed in the sense that α, β ∈ Φw implies (R≥0α+
R≥0β) ∩ Φ ⊆ Φw.

Section 4.2

Exercise 4.4.5 Let v and w be elements of the Coxeter group W such that
l(vw) = l(v) + l(w). Prove

Φvw = Φw ∪ w−1Φv .

Exercise 4.4.6 Let (W,S) be a Coxeter system and let J,K,L be subsets
of S. Show that JWK ∩WJWLWK ⊆WL.

Exercise 4.4.7 Let (W,S) be a Coxeter system and J,K ⊆ S.

(a) Prove that there is a bijection from JWK onto the set of orbits of WJ

on W/WK .
(b) Prove that there is a bijection between the set of orbits of WJ on W/WK

and the set of orbits of WK on W/WJ .

Exercise 4.4.8 Prove Corollary 3.3.6 by use of the exchange condition.

Exercise 4.4.9 Let (W,S) be a Coxeter system of type M , and suppose
that J and K partition S. Prove that the following three statements are
equivalent.
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(a) W = WJWK .
(b) For all s ∈ J and t ∈ K we have ms t = 2.
(c) W = WJ ×WK .

Section 4.3

Exercise 4.4.10 Let n ≥ 3. Let (W,S) be the Coxeter system of type An

and set J = [n]\{1, n}. Prove that JW J has size 7 and give minimal expres-
sions for its elements.

Exercise 4.4.11 Generalize the results of Example 4.3.3 as follows. Let
(W,S) be the Coxeter system of type An and set J = [n]\{k} for some
k ∈ [n] with k ≤ n/2.

(a) Prove that JW J has size k + 1 and give minimal expressions for its
elements.

(b) Derive that WJ has k + 1 orbits on W/WJ .

Exercise 4.4.12 Let n ≥ 2 and let (W,S) be the Coxeter system of type
Bn (defined in Example 3.2.6(i)). Set J = S\{1}. Show that JW J has size 3
and give minimal expressions for its elements.

Exercise 4.4.13 We consider once more the Coxeter diagram Ã2 that is a
triangle; it was introduced in Exercise 2.4.11. Prove that, for each k ∈ N, the
word (123)k ∈ M([3]) is a minimal expression for the corresponding Coxeter

group element in W (Ã2). Conclude that W (Ã2) has infinite order.

Exercise 4.4.14 Let (W,S) be a Coxeter system of typeM . ByH we denote
the algebra over the ring Q[t, t−1] generated by elements Tw subject to the
following relations, where r, s ∈ S.

T 2
s = (t− 1)Ts + t

TrTsTr · · ·︸ ︷︷ ︸
mrs factors

= TsTrTs · · ·︸ ︷︷ ︸
mrs factors

This algebra is known as the Hecke algebra of type M . Prove the following
four assertions.

(a) For each w ∈ W , there is an element Tw ∈ H such that Tw = Tr1
· · ·Trq

for each minimal expression r1 · · · rq of w.
(b) The elements Tw (w ∈W ) span H linearly.
(c) Specialising t to 1 gives a surjective homomorphism of rings from H to

the group algebra Q[W ] (cf. Exercise 1.8.11).
(d) H is a free Q[t, t−1]-module with basis Tw (w ∈W ).
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4.5 Notes

Section 4.1. The usual definition of root system is given in [2]. It differs
from the one used in this section in that it has an integrality and a finiteness
condition. In a later chapter, we will discuss these issues. The approach using
the root system to prove properties of minimal expressions was known and
probably introduced by Deodhar and Howlett, see [13].

Papi [29] has given a characterization of subsets of Φ+ of the form Φw for
some w ∈W as the subsets that are closed and whose complements in Φ+ is
also closed. He also shows that the element w is uniquely determined by Φw.

Section 4.2. The exchange condition can be found in [2]. In [14], a strong
exchange condition appears.

Section 4.3. The Tits rewrite rules appearing in Theorem 4.3.1, originate
from [37] and [25]. The number of minimal expressions for the longest word
in W (An−1) = Symn in Remark 4.3.2 is due to [36].
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5. Finite Coxeter groups

This chapter is devoted to the classification of finite Coxeter groups. In Sec-
tion 5.2 we first link finiteness of Φ and an upper bound on the word length
to finiteness of W . In Section 5.3 we state and prove the classification. We
begin, however, by showing that every finite reflection group is a Coxeter
group.

5.1 Finite reflection groups

The purpose of this section is to establish that every finite linear group gen-
erated by reflections is a Coxeter group. The approach is to find in such a
group a set S of reflections such that (G,S) is a Coxeter system.

Let V be a real vector space. We first recall some elementary facts on
finite subgroups of GL(V ).

Definition 5.1.1 A linear representation of a group G on a real vector space
V is called absolutely irreducible if it is irreducible and, after extension of
scalars to the complex numbers, the representation is still irreducible.

A symmetric bilinear form κ on a real vector space V is called posi-
tive definite if its corresponding quadratic form is positive definite, that is,
κ(x, x) ≥ 0 for all x ∈ V with equality only if x = 0.

Lemma 5.1.2 Let ρ : G→ GL(V ) be a linear representation of a finite group
G on a finite-dimensional real vector space V . Then there is a positive-definite
symmetric bilinear form κ on V that is invariant under G. If, moreover, ρ is
absolutely irreducible, then

(i) each linear map V → V commuting with G is multiplication by a scalar;
(ii) the form κ is the unique G-invariant bilinear form on V up to scalar

multiples.

Proof. As before, for the action of an element g ∈ G on a vector v ∈ V ,
we will often suppress ρ and write gv rather than ρ(g)v. Take any positive-
definite symmetric bilinear form κ1 on V and consider the sum κ over all of
its transforms by elements of G:
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κ(x, y) :=
∑

g∈G

κ1(gx, gy).

Then κ is a positive definite symmetric bilinear form on V that is invariant
under G.

(i) Suppose that A is a linear map V → V commuting with G, and take an
eigenvalue λ ∈ C of A. Then, after extension of the scalars to C, we obtain
the G-invariant subspace Ker (A − λ1) of V . As A has an eigenvector with
respect to λ, this subspace is nontrivial. Since G is absolutely irreducible, the
subspace must be all of V , whence A = λ1. This establishes (i).

(ii) Suppose that κ2 is yet another G-invariant bilinear form. Since V is
finite dimensional and κ1 is nondegenerate, any element of V ∗ is of the form
y 7→ κ1(z, y) for a unique z ∈ V . In particular, for each x ∈ V , there is a
unique vector u(x) in V such that κ2(x, y) = κ1(u(x), y) for each y ∈ V . It
is readily seen that u : V → V is a linear map. Since κ2 and κ1 are invariant
under G, the transformation u commutes with each member of G. Indeed,

κ1(u(gx), y) = κ2(gx, y) = κ2(x, g
−1y)

= κ1(ux, g
−1y) = κ1(g(ux), y)

for all x, y ∈ V . Since κ1 is nondegenerate, ug(x) = gu(x) for all x ∈ V .
By (i), u is multiplication by a scalar, say u = α · 1, with α ∈ R. Then
κ2 = ακ1, as required. tu

The following lemma covers part of the 2-dimensional case of the general
result stated in Theorem 5.1.4.

Lemma 5.1.3 Let V be a real 2-dimensional vector space supplied with a
positive-definite symmetric bilinear form κ and let G a finite subgroup of
O(V, κ) generated by two reflections with distinct mirrors. Write Φ for the
set of roots of reflections in G having norm 2 with respect to κ. Suppose that
h ∈ V is a vector such that κ(h, α) 6= 0 for all roots α ∈ Φ. Then there is a
unique pair α, β ∈ Φ such that κ(h, α) > 0, κ(h, β) > 0 and each root γ ∈ Φ
with κ(h, γ) ≥ 0 is a linear combination with non-negative coefficients of α
and β. Moreover κ(α, β) = −2 cos(π/m) for some m ∈ N.

Proof. Let rα and rβ be two generating reflections of G. Then G is isomorphic
to Dih2m, where m is the order of rαrβ and we recover the setting of Example
3.2.3. The result now follows from a comparison of Gα ∪ Gβ with the 2-
dimensional root system of Dih2m. tu

Theorem 5.1.4 Let V be a real vector space of dimension n < ∞ and G a
finite subgroup of GL(V ) generated by reflections.
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(i) There is a set ∆ of linearly independent roots of reflections in G such
that each reflection in G has a root that is a linear combination with
nonnegative coefficients of roots from ∆.

(ii) There is a set S of |∆| reflections in G, each having a root from ∆ as
in (i), such that (G,S) is a Coxeter system.

Proof. By Lemma 5.1.2 there is a positive definite symmetric bilinear form
κ such that G is a subgroup of O(V, κ). In particular, each reflection of G is
an orthogonal reflection with respect to κ. Let Φ be the set of roots of these
reflections of norm 2. Then Φ is finite as G is finite. Consequently, the union
of all mirrors of reflections in G does not cover V ; in other words, there is a
vector h in V not contained in any mirror of G. Let Φ+ be the intersection
of Φ with the half-space {x ∈ V | κ(h, x) ≥ 0}.

Take∆ to be the set of roots in Φ+ that cannot be written as a linear com-
bination with positive coefficients of at least two elements of Φ+. Let α, β ∈ ∆.
By Lemma 5.1.3 we find κ(α, β) = −2 cos(π/mα,β) for some mα,β ∈ N. Con-
sequently, the conditions of Theorem 3.2.4 are satisfied for the subgroup W
of G generated by S = {rα | α ∈ ∆}, with As = {x ∈ V | κ(h, x) ≥ 0} for
each s ∈ S. This proves (ii) provided we show W = G.

(i). We prove that the roots in ∆ are linearly independent. Suppose that∑
α∈∆ λαα = 0 for certain λα ∈ R. Put Σ = {α ∈ ∆ | λα > 0} and

Π = {β ∈ ∆ | λβ < 0}. Then v :=
∑

α∈Σ λαα =
∑

β∈Π(−λβ)β satisfies
0 ≤ κ(v, v) = −∑α∈Σ,β∈Π λαλβκ(α, β) ≤ 0, so κ(v, v) = 0, and hence v = 0.
Now 0 = κ(h, v) =

∑
α∈Σ λaκ(h, α) ≥ 0, so Σ = ∅, and similarly Π = ∅.

Therefore, λα = 0 for α ∈ ∆, which establishes that the roots in ∆ are
linearly independent. This completes the proof of (i).

(ii). By construction, W ⊆ G. Let γ ∈ Φ+. In order to establish G ⊆ W ,
it suffices to show γ = wα for some α ∈ ∆ and w ∈ W , for then
rγ = wrαw

−1 ∈ W and we are done as G is generated by reflections
rγ for γ ∈ Φ+. Suppose the contrary, and let γ be such that κ(h, γ) is
minimal for all choices of γ in Φ+\⋃α∈∆ Wα. Write γ =

∑
α∈∆ cαα with

cα ≥ 0. As
∑

α∈∆ cακ(γ, α) = κ(γ, γ) > 0, there exists α ∈ ∆ with
κ(γ, α) > 0. Now rαγ =

∑
β∈∆\{α} cββ + (cα − κ(γ, α))α with cβ > 0 for

some β ∈ ∆\{α} and so rαγ ∈ Φ+. Moreover, κ(rαγ, h) = κ(γ, rαh) =
κ(γ, h) − κ(γ, α)κ(h, α) < κ(γ, h), a contradiction with the minimality of
κ(h, γ). This gives γ ∈ ⋃

α∈∆ Wα, as required. tu

The intersection of all mirrors of reflections of G coincides with the inter-
section of all mirrors of reflections having roots in ∆. Hence, it is an (n−|∆|)-
dimensional subspace of V each of whose vectors is fixed by G. Besides, it is
orthogonal to the |∆|-dimensional subspace spanned by ∆. Therefore, we can
restrict our attention to the latter subspace and, by the theorem, identify it
with the reflection representation space of the corresponding Coxeter group.
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In view of Theorem 5.1.4, a full determination of finite reflection groups
hinges on the classification of finite Coxeter groups.

Example 5.1.5 Consider the cube as drawn in Figure 3.2 of Example 3.2.1.
There are 9 reflections leaving the cube invariant. Let G be the group they
generate. Any choice of a vector h in the black part of the front face of the
figure leads to the choice of S as the set of reflections whose mirrors bound
the black part. More precisely, set α1 = (1, 0,−1), α2 = (0,−1, 1), and α3 =√

2(0, 1, 0); then the black area coincides with the part of the cube surface
consisting of all vectors x with (x, αi) ≥ 0 for i ∈ [3]. The theorem gives that
(G,S) is a Coxeter system, where S consists of the reflections with mirrors α1,
α2, and α3. Now (α1, α3) = 0 = −2 cos(π/2), (α1, α2) = −1 = −2 cos(π/3),
and (α2, α3) = −

√
2 = −2 cos(π/4), and the Coxeter diagram B3 emerges.

The orthogonal group O(n,R) shows that a group generated by reflections
and leaving invariant a positive-definite symmetric bilinear form, need not be
finite; see Exercise 5.4.1. The following result shows that, still, in the reflection
representation of a Coxeter group W on the vector space V , two reflections
generate a finite subgroup of W provided their roots span a positive-definite
subspace of V . This result will be of use in Chapter 7, notably Theorem 7.2.9.

Lemma 5.1.6 Suppose (W,S) is a Coxeter system, ρ : W → O(V,B) is
its reflection representation, and Φ is the corresponding root system Φ. If
α, β ∈ Φ span a positive-definite subspace of V with respect to B, then 〈rα, rβ〉
is a finite subgroup of W .

Proof. If w ∈ W , then 〈rwα, rwβ〉 = w〈rα, rβ〉w−1, so it suffices to prove the
statement for a representative pair from each W -orbit of pairs of roots. By
definition of Φ, we can choose the representative pair (α, β) in such a way
that α = es for some s ∈ S. Also, as rβ = r−β , we may assume β ∈ Φ+.

Write β =
∑

t∈S µtet and put v = β−µses. Now µt ≥ 0 for all t. If β and
α are linearly dependent, then 〈rα, rβ〉 is of order 2 and there is nothing to
prove. So suppose they are not. Then v 6= 0 and so µt > 0 for at least one
t ∈ S\{s}.

Each root of a reflection in 〈rα, rβ〉 will be of the form λes + µv = (λ −
µµs)es +

∑
t∈S\{s} µµtet, with λ and µ of the same sign. For, it suffices to

prove the statement when the root is positive, in which case µµt ≥ 0 for all
t ∈ S\{s}, so µ ≥ 0, and λ ≥ µµs ≥ 0.

Suppose now that 〈rα, rβ〉 is not finite. Then rαrβ is a rotation of Res+Rv
of infinite order and so, with respect to the positive-definite form induced by
B, it is a rotation over an angle πa with a irrational. Now certain high powers
of rαrβ will be rotations over arbitrary small degrees. As a consequence, the
image of es under a suitable power of rαrβ will be of the form λes + µv with
λ > 0 and µ < 0, contradicting that the signs of λ and µ are equal for roots. tu
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5.2 Finiteness criteria

Recall from Definition 4.1.3 that the set of reflections of a Coxeter system
(W,S) is the set R =

⋃
w∈W wSw−1. For t ∈ R, denote by αt the unique

positive root of t in Φ; cf. Remark 4.1.4.

Proposition 5.2.1 Let (W,S) be a Coxeter system with set of reflections R.
For t ∈ R and w ∈ W , the following three statements are equivalent.

(i) l(tw) ≤ l(w).
(ii) αt ∈ Φw−1 .
(iii) If r1 · · · rq is an expression for w (not necessarily minimal), then there

is i ∈ [q] such that tr1 · · · ri = r1 · · · ri−1.

Proof.

(ii)⇒(iii). Suppose that w = r1 · · · rq with ri ∈ S. Let αt ∈ Φw−1 , that
is, αt ∈ Φ+ and w−1αt ∈ Φ−. Then there is i ∈ [q] with ri−1 · · · r1αt ∈
Φ+ and ri · · · r1αt ∈ Φ−. By Corollary 4.1.5, ri−1 · · · r1αt ∈ Φri

= {αi},
where αi = αri

, so, by Remark 4.1.4, ri−1 · · · r1tr1 · · · ri−1 = ri, whence
tr1 · · · ri−1 = r1 · · · ri−1ri, proving (iii).

(iii)⇒(i). Take q = l(w) in (iii), so tw has expression r1 · · · ri−1ri+1 · · · rq for
some i ∈ [q]. The length of this expression is q − 1.

(i)⇒(ii). The two implications just proved show that each w ∈ W and
t ∈ R with w−1αt ∈ Φ− satisfy l(tw) ≤ l(w). Suppose now that (ii) does
not hold; then w−1αt ∈ Φ+. As t2 = 1, we then have (tw)−1αt ∈ Φ−, so,
replacing w by tw in the conclusion of the first sentence of this paragraph,
we find l(t(tw)) ≤ l(tw), proving l(tw) ≥ l(w), which means that (i) does
not hold (equality does not occur in view of the difference in parity between
l(w) and l(tw)). This establishes the required implication. tu

Corollary 5.2.2 Let (W,S) be a Coxeter system with set of reflections R.
If t ∈ R and v, w ∈ W satisfy l(tw) ≤ l(w) and l(tv) ≤ l(v), then l(v−1w) <
l(v−1tw).

Proof. By Proposition 5.2.1, for t, v, and w as in the hypotheses, we have
αt ∈ Φw−1 ∩Φv−1 . Consequently, −v−1αt is the positive root of the reflection
v−1tv, so −v−1αt = αv−1tv , and

(w−1v)αv−1tv = −(w−1v)v−1αt = −w−1αt ∈ Φ+.

Proposition 5.2.1 gives l((v−1tv)(w−1v)−1) ≥ l((w−1v)−1), which is equiv-
alent to l(v−1tw) ≥ l(v−1w). tu

Remark 5.2.3 Let (W,S) be a pair consisting of a group W and a gener-
ating set S for W . The strong exchange condition for (W,S) is the following
property.
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If t ∈ R and r1, . . . , rq ∈ S satisfy w = r1 · · · rq and l(tw) ≤ l(w),
then there is j ∈ [q] such that tr1 · · · rj−1 = r1 · · · rj .

By Proposition 5.2.1 this condition is satisfied in a Coxeter system. But the
condition is stronger than the exchange condition of Definition 4.2.1 as q is
no longer required to be the length of w and t varies over all reflections of
(W,S) (cf. Definition 4.1.3) rather than S. Hence, in view of Theorem 4.2.4,
the strong exchange condition also characterizes Coxeter groups.

The above details regarding the root system lead to several finiteness
criteria for Coxeter groups.

Theorem 5.2.4 The following statements regarding a Coxeter system (W,S)
with S finite and R the set of all reflections of W are equivalent.

(i) The group W is finite.
(ii) The root system Φ of W is finite.
(iii) There is a longest element in W (with respect to l).
(iv) There is a unique element w ∈W with l(tw) < l(w) for all t ∈ R.
(v) There is a unique longest element in W (with respect to l).

Moreover, the elements of (iii) and (iv) coincide and have length |Φ+|.

Proof.

(i)⇒(ii). A look at Definition 4.1.1 shows that the root system Φ is the union
of at most n orbits of W , so, if W is finite, then so is Φ.

(ii)⇒(iii). If Φ is finite, then, by Corollary 4.1.5, there is an upper bound
to the values of the length function on W , so there is an element in W of
greatest length.

(iii)⇒(iv). By (iii), there is a longest element w0 of W . Then, by definition,
l(tw0) < l(w0) for all t ∈ R. Suppose that w1 is an element of W with
l(tw1) < l(w1) for all t ∈ R. Then, by Corollary 5.2.2, for any t ∈ R, we
have l(w−1

0 w1) < l(w−1
0 tw1). Applying this inequality with the reflection

w0tw
−1
0 ∈ R instead of t, we find l(w−1

0 w1) < l(t(w−1
0 w1)) for all t ∈ R. This

implies w−1
0 w1 = 1, and so w0 = w1.

(iv)⇒(i). Let w be as in (iv). By Proposition 5.2.1 each positive root belongs
to Φw−1 , so, by Corollary 4.1.5, |Φ+| = l(w−1) is finite. In view of Proposition
4.1.2(iii), |Φ| = 2|Φ+| is finite as well. According to Proposition 4.1.2(i), W
acts faithfully on Φ and so W is finite.

(iv)⇔(v) follows directly from the fact that any w ∈ W is a longest element
if and only if l(tw) < l(w) for all t ∈ R.

The final statement is a consequence of the proofs of (iv)⇒(i) and (iv)⇔(v). tu
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Corollary 5.2.5 The longest element of W is the unique element of W with
l(sw) < l(w) for all s ∈ S.

Proof. Let w ∈ W satisfy l(sw) < l(w) for each s ∈ S and let t ∈ R.
Then αt ∈ Φ+, so there are λs ∈ R≥0 such that αt =

∑
s∈S λses. By

Proposition 4.1.2(iv), w−1αt =
∑

s∈S λsw
−1es with w−1es ∈ Φ−. Hence

w−1αt ∈ ∑s∈S R≤0es, so w−1αt ∈ Φ− and, by Proposition 5.2.1, l(tw) <
l(w). In particular w satisfies the condition of Theorem 5.2.4(iii), hence
also (iv), which states that w is the unique longest element of W . tu

Definition 5.2.6 If W (M) is finite, then we say that M is spherical . If
T ⊆ S is spherical, we denote by wT the unique longest element of WT .

The following result gives more information on the coset decomposition
than its predecessor Lemma 2.2.3.

Corollary 5.2.7 Suppose w ∈ W and T ⊂ S satisfy l(tw) ≤ l(w) for each
t ∈ T . Then WT is finite and there is v ∈ TW such that w = wT v with
l(w) = l(wT ) + l(v).

Proof. By Lemma 2.2.3 there are u ∈ WT and v ∈ TW with w = uv and
l(w) = l(u) + l(v). As l(su) ≤ l(u) for all s ∈ T , Corollary 5.2.5 implies
u = wT . tu

Corollary 5.2.8 If W is finite and S 6= ∅, then its longest element wS

satisfies the following properties.

(i) l(wS) = |Φ+|.
(ii) wS is an involution.
(iii) For each w ∈ W , we have l(wwS) = l(wS) − l(w) = l(wSw).
(iv) The map x 7→ wSxwS (x ∈ W ) is an automorphism of W leaving

invariant the subset S.

Proof.

(i) is already stated in Theorem 5.2.4.

(ii). According to Exercise 4.4.1, l(w−1
S ) = l(wS), so it follows from Theorem

5.2.4 that w−1
S = wS , that is, w2

S = 1. Clearly, wS 6= 1 as S 6= ∅.
(iii). Fix w ∈ W . We apply Exercise 4.4.2 with v = wSw

−1. As Φw ⊆ Φ+ =
ΦwS

, we find l(wS) = l(wSw
−1) + l(w) = l(wwS) + l(w), proving the first

equality. As wS is an involution (see (ii)), the second equality follows by
inverting the arguments and replacing w by its inverse.

(iv). By (ii), wS is an involution, so the map is conjugation by wS . Let
s ∈ S. Then l(wSswS) = l(wS) − l(swS) = l(wS) − l(wS) + l(s) = 1 by
a double application of (iii). This implies wSswS ∈ S. tu
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Remark 5.2.9 The fact that wS preserves S under conjugation implies that
it induces an automorphism on M . This automorphism is called the opposi-
tion on M . It is the identity if and only if wS is in the center of the group
W .

5.3 The classification

We have already given several examples of finite irreducible Coxeter groups.
We shall now classify all of them.

There is no harm in restricting ourselves to irreducible groups; cf. Defini-
tion 2.2.4.

Lemma 5.3.1 Let (W,S) be a Coxeter system of type M . Then W is finite
if and only if WJ is finite for each connected component J ⊆ S of the labelled
graph M .

Proof. This is immediate from Proposition 2.2.5. tu

The quadratic form QM associated with the reflection representation of
a Coxeter group was introduced in Definition 2.3.2.

Proposition 5.3.2 For any Coxeter system (W,S) of type M = (mij)s,t∈S

such that W is irreducible, the following properties are equivalent.

(i) W is finite.
(ii) The reflection representation ρ : W → GL(V ) is irreducible.
(iii) The quadratic form QM associated with M is positive definite.

Proof.

(i)⇒(ii). Since W is finite, S is finite and the vector space V =
⊕

s∈S Res is
finite dimensional. By Lemma 5.1.2 there is a positive-definite bilinear form κ
invariant under ρW . Suppose that E is a proper nontrivial invariant subspace
of V . Then so is its perpendicular D = {x ∈ V | κ(x,E) = 0} with respect to
κ. By Proposition 2.3.7, both D and E are in the radical of B. As V = D⊕E
(use that κ is positive definite), this leads to B = 0, a contradiction with
B(e1, e1) = 2. We have shown that ρ is irreducible.

(ii) ⇒ (iii). In view of Lemma 5.1.2(ii), the symmetric bilinear form B is
a nonzero scalar multiple of a positive-definite form. As B(e1, e1) > 0, this
scalar must be positive, and so B is positive definite as well.

(iii) ⇒ (i). The linear map sending y ∈ V to Dy ∈ V ∗ defined by (Dy)x =
B(y, x) is an isomorphism of W -modules. For, it clearly is an isomorphism of
vector spaces and (D(wy))x = B(wy, x) = B(y, w−1x) = (Dy)(w−1x) =
(w(Dy))x for all x, y ∈ V , so Dw = wD for all w ∈ W . Recall from



5.3 The classification 75

Theorem 3.3.5(ii) that A =
⋂

s∈S As, where As = {h ∈ V ∗ | h(es) ≥ 0}, is a
prefundamental domain for W in V ∗. As D is an isomorphism of W -modules,
D−1A is a prefundamental domain for W in V , so all wA, for w ∈ W ,
are distinct. Now D−1A is non-empty and coincides with the intersection
of the half-spaces {x ∈ V | B(x, es) ≥ 0}. In particular, its intersection
with the unit ball {x ∈ V | QM (x) ≤ 1} has positive volume, say µ. Now⋃

w∈W wD−1A has volume µ|W | and lies in the unit ball, so µ|W | is bounded
from above by the volume of the unit ball, which proves that |W | is finite. tu

Theorem 5.3.3 An irreducible Coxeter group is finite if and only if its Cox-
eter diagram occurs in Table 5.1.

Proof. We proceed in thirteen steps.

Step 1. If M occurs in Table 5.1, then W is finite. This can be derived
directly from Proposition 5.3.2 by checking that BM is positive definite.

From now on, let W be a finite irreducible Coxeter group of type M .

Step 2. Any subdiagram of M is the Coxeter diagram of a finite Coxeter
group. This follows from Corollary 3.3.6.

Step 3. 5.4.10 for a proof. Here is another proof. Suppose (after suitably

relabeling the indices) that M has a circuit on [k]. Then e =
∑k

i=1 ei satis-
fies QM (e) = k − 2

∑
i<j cos(π/mij) and since there are k pairs {i, j} with

cos(π/mi,j) ≥ 1
2 while the other pairs provide a contribution greater than or

equal to zero. So QM (e) ≤ 0, a contradiction as QM is positive definite.

Step 4. The diagram M cannot have a subdiagram of the form Ã1, B̃n

(n ≥ 2), C̃n (n ≥ 2), F̃4, or G̃2. By Examples 3.2.6(iii), these diagrams have
infinite groups.

Step 5. For each i ∈ [n], we have
∑

j 6=i B(ei, ej)
2 < 4. Indeed, let J be the

set of j ∈ [n] such that mij ≥ 3. By Step 3, mj k = 2 for all j, k ∈ J , and so
{ej | j ∈ J} is an orthogonal set. Now

QM (ei −
1

2

∑

k∈J

B(ei, ek)ek) = 1 +
1

4

∑

k∈J

B(ei, ek)2 − 1

2
B(ei, ek)2

= 1 − 1

4

∑

k 6=i

B(ei, ek)2,

so the statement states that this value must be positive.

Step 6. An element i ∈ [n] cannot be on more than three edges of M . If
{i, j} is an edge of M , then B(ei, ej)

2 = 4 cos2(π/mij) ≥ 1 and so it suffices
to apply Step 5.

Step 7. If an element i ∈ [n] is on three edges of M then all these edges
have label mij = 3. Obvious by Step 5.



76 5. Finite Coxeter groups

Table 5.1. Diagrams of irreducible finite Coxeter systems. The diagrams G2 and

I
(6)
2 are the same. The diagrams H2 and B2 might be defined as I

(5)
2 and I

(4)
2 ,

respectively. The diagram A2 coincides with I
(3)
2 .

name diagram

An (n ≥ 1) ◦
1

◦
2

◦
3
· · · · · · ◦

n−1
◦
n

Bn = Cn (n ≥ 3) ◦
1

◦
2
· · · · · · ◦

n−2
◦

n−1

4 ◦
n

Dn (n ≥ 4)

◦
1

◦
2

. . . . . . ◦
n−3

◦
n−2

◦
n

n−1
◦

E6

◦
1

◦
3

◦
4

◦
5

◦
6

2
◦

E7

◦
1

◦
3

◦
4

◦
5

◦
6

◦
7

2
◦

E8

◦
1

◦
3

◦
4

◦
5

◦
6

◦
7

◦
8

2
◦

F4 ◦
1

◦
2

4 ◦
3

◦
4

G2 ◦ 6 ◦

H3 ◦
1

◦
2

5 ◦
3

H4 ◦
1

◦
2

◦
3

5 ◦
4

I
(m)
2 (m ≥ 3) ◦ m ◦
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Step 8. If mij ≥ 6, then n = 2. If n ≥ 3, then, as M is connected, there is
a node in {i, j}, say i, with another node, say k, adjacent to it. Now Step 5
gives 4 = 1 + 3 ≤ B(ei, ek)2 +B(ei, ej)

2 < 4, a contradiction.

Step 9. If i ∈ [n] is on three edges of M then all edges of M are of multiplicity
mij = 3. Otherwise, by Steps 8 and 7, there exists a subdiagram

◦
1

3◦

◦
2

◦
4
· · · · · · ◦

n−2
◦

n−1

α ◦
n

with α = 4 or 5. Then

QM (e1 + e2 + 2(e3 + e4 + · · · + en−1) +
√

2en) ≤ 0.

Step 10. If mij = 5 then i is on at most one more edge and, if so, this
edge, say {i, k}, has label mik = 3. This is due to Step 5 as cos2 π/5 =
(6 + 2

√
5)/16 ≈ 0.65.

Step 11. There is at most one i ∈ [n] which is on three edges of M . For
otherwise, by Steps 6, 7, and 9, there is a subdiagram

◦
1

3◦

◦
2

◦
4
· · · · · · ◦

n−3

n−1◦

◦
n−2

◦
n
.

Now, the quadratic form QM vanishes on

e1 + e2 + 2(e3 + e4 + · · · + en−2) + en−1 + en,

which contradicts that it be positive definite.

Step 12. M cannot have a subdiagram of the form

◦
1

◦
2

◦
3

4 ◦
4

◦
5

,

◦
1

◦
2

◦
3

8◦

◦
4

◦
5

◦
6

◦
7

,
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◦
1

◦
2

7 ◦

6 ◦

◦
3

◦
4

◦
5

,

◦
1

◦
2

9◦

◦
3

◦
4

◦
5

◦
6

◦
7

◦
8
,

◦
1

◦
2

5 ◦
3

◦
4

,

◦
1

α ◦
2

◦
3

5 ◦
4

(α ≥ 4),

◦
1

α ◦
2

◦
3

◦
4

5 ◦
5

(α ≥ 3).

Consider the vector x given by, in the respective cases,

x = e1 + 2e2 + 3e3 + 2
√

2e4 +
√

2e5,

x = e1 + 2e2 + 3e3 + 4e4 + 3e5 + 2e6 + e7 + 2e8,

x = e1 + 2e2 + 3e3 + 2e4 + e5 + 2e6 + e7,

x = 2e1 + 4e2 + 6e3 + 5e4 + 4e5 + 3e6 + 2e7 + e6 + 3e9,

x = e1 + 2e2 + 2e3 + e4,

x = e1 + 2e2 + 2e3 + e4,

x = e1 + 2e2 + 3e3 + 4e4 +
5

2
(
√

5 − 1)e5.

A straightforward calculation gives that QM (x) ≤ 0 in each of these cases.

Step 13. The only connected diagrams satisfying the conditions of Steps
3–12 are those in the list of the theorem. This is easily verified. tu

Remark 5.3.4 By analysis of the root system and the corresponding Cox-
eter group action it can be shown that the orders of the Coxeter groups of
type En (n = 6, 7, 8) and their root systems are
The corresponding numbers for Dn are in Exercise 5.4.2 and the orders for
most other irreducible spherical types are in Table 3.1.
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type group order root system size
E6 51,840 72
E7 2,903,040 126
E8 696,729,600 240

5.4 Exercises

Section 5.1

Exercise 5.4.1 Prove that O(n,R), the orthogonal group on Rn with respect
to the standard inner product, is generated by reflections. Verify that, for
n > 1, this group is not a Coxeter group.

Exercise 5.4.2 (Cited in Theorem 5.3.3) Let n ≥ 4 and consider the follow-
ing set of 2n(n− 1) vectors in Rn with standard basis ε1, . . . , εn.

Φ = {±εi ± εj | 1 ≤ i < j ≤ n}

Here, the two ± signs stand for independent variations, so one expression
indicates four distinct elements. Let (·, ·) be the standard inner product on
Rn.

(a) Prove that each orthogonal reflection rα (cf. Exercise 3.4.5) with root
α ∈ Φ leaves Φ invariant. Denote by W the group generated by all rα for
α ∈ Φ.

(b) Prove that

∆ = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn}

is a subset of Φ with the property that each element of Φ is a linear
combination of members of ∆ all of whose nonzero coefficients have the
same sign.

(c) Derive that W is a finite Coxeter group of type Dn (see Table 5.1 for the
diagram).

(d) Prove that |W | = 2n−1n!
(Hint: Interpreting the roots of Φ modulo 2, one obtains a surjective
homomorphism W → W (An−1); determine the order of the kernel and
use the first isomorphism theorem.)

Section 5.2

Exercise 5.4.3 Which permutation in Symn+1 corresponds to the longest
element in W (An) under the isomorphism between the two groups?

Exercise 5.4.4 Consider the real vector space V = R8, its standard basis
ε1, . . . , ε8, and the standard inner product (·, ·). Let Φ be the subset of V
consisting of
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• all ±εi ± εj , i < j (with the same convention for the two ± signs as in
Exercise 5.4.2), and

• all 1
2

∑
i(−1)kiεi with

∑
i ki even.

(a) Verify that |Φ| = 240.
(b) Prove that Φ is invariant under each orthogonal reflection rα with respect

to (·, ·) having a root α in Φ; cf. Exercise 3.4.5.
(c) Consider the following elements of Φ.

α1 =
1

2
(ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8),

α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2

α5 = ε4 − ε3, α6 = ε5 − ε4, α7 = ε6 − ε5,

α8 = ε7 − ε6.

Verify that the Gram matrix of α1, . . . , α8, that is, the matrix of inner
products (αi, αj) for i, j ∈ [8], is equal to the Gram matrix of the basis
e1, . . . , e8 of the reflection representation of the Coxeter group of type E8

with respect to the symmetric bilinear form BE8
(see Table 5.1 for the

diagram). Conclude that (〈S〉, S), where S = {rαi
| i ∈ [8]}, is a Coxeter

system of type E8.
(d) Prove that the subgroup 〈S〉 of (c) coincides with 〈rα | α ∈ Φ〉 and that

W (E8) is finite.

Exercise 5.4.5 Let Ψ be the set of roots from Φ of Exercise 5.4.4 inside the
linear span of α1, . . . , α6.

(a) Prove that Ψ has size 72 and that Ψ is invariant under si = rαi
for each

i ∈ [6].
(b) Set S = {s1, . . . , s6} and W = 〈S〉. Show that (W,S) is a Coxeter system

of type E6 (see Table 5.1 for the diagram).
(c) Show that (s1s2 · · · s6)6(s1s3s1s5s6s5) is the longest element w0 of W .
(d) What is the action of w0 on the Coxeter diagram E6?
(e) Prove that each element of the subgroup F = 〈s1s6, s3s5, s4, s2〉 is fixed

under conjugation by w0.
(f) Show that F is a homomorphic image of the Coxeter group of type F4.

(Later, we will prove that this homomorphism is in fact an isomorphism.)

Exercise 5.4.6 Consider w0 = (s1s2s3s4)
15 in W (H4) (see Table 5.1 for the

diagram).

(a) Show that the image ρ(w0) of w0 in the reflection representation ρ of
W (H4) is equal to scalar multiplication by −1.

(b) Determine the root system of H4 and show that it has size 120.
(c) Show that w0 is the longest element of W (H4).
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Exercise 5.4.7 Let n ∈ N, n ≥ 3, and consider the Coxeter system (W,S)
of type Bn with S = {s1, . . . , sn}.
(a) Take ε1, . . . , εn to be the standard orthonormal basis of Rn with respect

to the standard inner product (·, ·). Prove that, up to a coordinate trans-
formation,

{εi ± εj ,
√

2εk | i, j, k ∈ [n], i < j}
is the set of positive roots of the root system for W in its reflection
representation.

(b) Show that the subgroup D of W generated by s1, . . . , sn−1, snsn−1sn is
a homomorphic image of the Coxeter group of type Dn.

(c) Derive from the results of Exercise 5.4.2 that D is isomorphic to W (Dn).
(d) Prove that D has index 2 in W and conclude that |W | = 2nn!

Exercise 5.4.8 Let (W,S) be a finite irreducible Coxeter system of type M .
Prove that the following statements are equivalent.

(a) The action of the opposition on S is trivial.
(b) There is an element in W that maps to scalar multiplication by −1 under

the reflection representation.
(c) The longest element of W maps to scalar multiplication by −1 under the

reflection representation.

Exercise 5.4.9 Let (W,S) be a finite irreducible Coxeter system of type M .
Prove that the opposition on M is trivial if and only if M is one of A1, Bn

(n ≥ 3), Dn (n even), E7, E8, F4, I
(m)
2 (m even), Hn (n ∈ {3, 4}).

Section 5.3

Exercise 5.4.10 (Cited in Theorem 5.3.3) Let (W,S) be a Coxeter system of
type M and let k ≥ 3. Suppose that 1, 2, . . . , k is a circuit in M (so m1,k ≥ 3
and mi,i+1 ≥ 3 for i ∈ [k − 1]). Show that the word (12 · · · k)i is a minimal
expression in M(S) for each i ∈ N. Conclude that W is an infinite group.
(Hint: Use Theorem 4.3.1.)

Exercise 5.4.11 By means of an example it will become clear in this exercise
that finite complex linear groups generated by reflections need not be Coxeter
groups. Put σ = (1 +

√
−7)/2 and consider the following set of vectors in C3

with standard basis ε1, ε2, ε3.

Φ = ±
{
εi,

σ

2
(εi ± εj),

1

2
(εi ± εj ± σεk)

∣∣∣∣ {i, j, k} = [3]

}

Supply C3 with the standard hermitian inner product (x, y) =
∑

i xiyi. For
α ∈ Φ, let rα be the unitary reflection with respect to (·, ·) having root α,
that is,

rαx = x− 2(x, α)(α, α)−1α (x ∈ C3).
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(a) The size of Φ is equal to 42.
(b) For each α ∈ Φ, the reflection rα leaves Φ invariant.
(c) The group W = 〈rα | α ∈ Φ〉 is generated by S := {rα1

, rα2
, rα3

}, where

α1 = ε2, α2 =
σ

2
(ε2 + ε3), α3 =

1

2
(ε1 + ε2 − σε3).

(d) W is a homomorphic image of the Coxeter group with Coxeter matrix




1 3 3
3 1 4
3 4 1


 .

(e) The order of W is equal to 336.
(f) The pair (W,S) is not a Coxeter system.
(g) The center of W has order 2.
(h) The group W is not isomorphic to any finite Coxeter group.

5.5 Notes

Sections 5.1 and 5.2. Most finiteness characterizations are in [2]. There
are interesting combinatorial properties of Φ that we will not go into in this
course. For instance, for each finite Coxeter group of rank n, there exist
positive integers d1, . . . , dn with d1 ≤ d2 ≤ · · · ≤ dn such that Φ has precisely
d1 + · · · + dn − n elements, d1d2 · · · dn = |W |, and the sum di + dn+1−i is
constant for i ≤ bn/2c. If M = An, then these integers are 2, 3, . . . , n+ 1.

Lemma 5.1.6 is taken from [3], where it is credited to Dyer.
Section 5.3. Most of this material is dealt with in [2]. There, and in [20],

you can also find classifications of Coxeter diagrams M for which QM is
hyperbolic.

The proof of Proposition 5.3.2 did not need the precise value of the volume
of the n-dimensional unit ball, which is well known to be π

n
2 Γ (n

2 + 1).



6. Weyl groups and parabolic subgroups of

Coxeter groups

In this chapter we will determine the finite Coxeter groups leaving invariant
a lattice in the reflection representation. Such groups are called Weyl groups.
They play a major role in the classification of finite-dimensional simple com-
plex Lie algebras and in Chevalley groups, the finite samples of which are
prominent in the classification of finite simple groups; see Theorem 1.7.1.

Our first goal is to introduce the bare essentials on lattices; this takes
place in Section 6.1. In the next section, we classify Weyl groups. The last
section is devoted to finite subgroups of Coxeter groups; these turn out to
be contained in parabolic subgroups, that is, conjugates of finite subgroups
generated by a subset of the standard generating set.

6.1 Lattices

Consider the n-dimensional vector space Rn with the standard inner product,
which we denote by (·, ·). The Euclidean length of norm of a vector v ∈ Rn

is equal to
√

(v, v). By the square norm of a vector v we mean (v, v). For
i ∈ [n], we usually denote by εi the i-th standard basis vector.

A lattice can be defined as a discrete additive subgroup of Rn, but Def-
inition 6.1.1 below is another approach. According to Lemma 6.1.2 the two
definitions are equivalent. Given any two lattices L and L′ in Rn, it is easy
to find a linear transformation mapping L onto L′. But this transformation
need not respect the structure of Rn as a Euclidean space. The orthogonal
group

O(n,R) = {g ∈ GL(n,R) | (gx, gy) = (x, y) for all x, y ∈ Rn} (6.1)

does. Elements of this group are called orthogonal transformations .

Definition 6.1.1 A lattice in Rn is an additive subgroup of Rn generated
by a basis of Rn. Such a basis will also be called a basis of L. We call two
lattices similar whenever one can be transformed into the other by means of
an orthogonal transformation.

An orthogonal transformation preserving L is called an automorphism of
L. The set of all automorphisms of L, denoted Aut(L), is a group, called the
automorphism group of L.
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Being similar, also referred to as similarity , is an equivalence relation.
We cannot find an orthogonal linear transformation (a member of O(n,R))
mapping the lattice Zn to 2Zn (see Remark 6.1.7 below). In other words,
there is more than one similarity class of lattices in Rn.

Lemma 6.1.2 Let L be an additive subgroup of Rn. Then L is discrete in
Rn if and only if L contains linearly independent vectors v1, . . . , vr such that
L = Zv1 + · · · + Zvr.

Proof. Suppose L = Zv1 + · · · + Zvr with v1, . . . , vr linearly independent
over R. Let µ be the minimum of (λ1v1 + · · · + λrvr, λ1v1 + · · · + λrvr) as
λ1, . . . , λr run over all real numbers such that λ2

1 + · · ·+ λ2
r = 1. Since the vi

are independent, this minimum is nonzero. Moreover, for any λ1, . . . , λr ∈ R,

(λ1v1 + · · · + λrvr, λ1v1 + · · · + λrvr) ≥ µ(λ2
1 + · · · + λ2

r).

Hence, for any nonzero v ∈ L, we obtain (v, v) ≥ µ. Consequently, L is
discrete.

Suppose, conversely, that L is discrete. Let r be the dimension of the R-
linear span of L and choose r linearly independent elements w1, . . . , wr of L.
Consider the set

F = {x ∈ L | x = µ1w1 + · · · + µrwr, ∀i : 0 ≤ µi ≤ 1}.

Since L is discrete, the set F is finite. For i = 1, . . . , r we choose vi ∈ F
such that vi ∈ µiwi + Rwi+1 + · · · + Rwr with µi > 0 and minimal. Since
wi ∈ F , such an element always exists. Clearly the vi are also linearly
independent. Let v ∈ L and write v =

∑r
i=1 λivi. For each i, let νi be

equal to λi minus its largest integral part. Then v′ :=
∑r

i=1 νivi is also an
element of L. We assert that νi = 0 for all i. Suppose not, then choose
j ∈ [r] minimal such that νj > 0. Then v′ ∈ νjµjwj + Rwj+1 + · · · + Rwr,
contradicting the minimality of µj in our choice of vj . tu

Corollary 6.1.3 The automorphism group of each lattice of Rn is finite.

Proof. The argument is similar to the one for Proposition 5.3.2: Let b1, . . . , bn
be a basis of a lattice L of Rn. As L is a discrete subset of Rn, the set N of
all vectors in L whose square norm is equal to (bi, bi) for some i ∈ [n] is finite
and invariant under Aut(L). But N contains the basis bi (i ∈ [n]) of Rn, so
the restriction of Aut(L) to N is faithful (cf. the proof of Proposition 1.5.3).
Consequently, Aut(L) embeds in the finite group Sym(N), and so is finite. tu

Notation 6.1.4 A basis b1, . . . , bn of Rn determines the lattice

L = Zb1 ⊕ Zb2 ⊕ · · · ⊕ Zbn.

We collect the vectors bi as columns in a matrix B and write L(B) for L.
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The matrix B can also be used to describe L as the image of the map

Zn → Rn, x 7→ Bx.

In general, a lattice can be given by many different bases.

Lemma 6.1.5 If B is a matrix whose columns are a basis for the lattice L
in Rn, then

d(L) := | det(B)|
does not depend on the chosen basis.

Proof. If b′1, . . . , b
′
n is a second basis of L, with corresponding matrix B′,

then there are integers xij and yij (1 ≤ i, j ≤ n) such that b′i =
∑n

j=1 xijbj
and bi =

∑n
j=1 yijb

′
j . In terms of matrices: B′ = BX and B = B′Y . Now

det(B) = det(B′) det(Y ) = det(B) det(X) det(Y ), so det(X) det(Y ) = 1.
As both factors are integers, it follows that det(X) = det(Y ) = ±1 and so
| det(B)| = | det(B′)|. tu

Definition 6.1.6 We call a property of L an invariant when it holds for all
lattices in the similarity class of L.

Remark 6.1.7 The number d(L) is an invariant because, for g ∈ O(n,R),
we have det(g) = ±1, so d(gL) = | det(gB)| = | ± det(B)| = d(L). The
number d(L) is often called the determinant of L. The discriminant of L is
the square of d(L). The determinant of L measures the n-dimensional volume
of {λ1b1 + · · · + λnbn | 0 ≤ λ1, . . . , λn ≤ 1} in the Euclidean space on Rn.
Clearly, d(Zn) = 1 and d(2Zn) = 2n, so the lattices Zn and 2Zn are not
similar.

The isomorphism type of Aut(L) is another example of an invariant of L.

Example 6.1.8 The lattice

L = {(x1, . . . , xn) ∈ Zn | x1 + x2 + · · · + xn is even}

of Rn has d(L) = 2. This follows directly from the choice of basis ε1 −
ε2, . . . , εn−1−εn, 2εn for L: the matrix whose columns are these basis elements
has determinant 2. This lattice is usually denoted L(Dn) (for n ≥ 3). Later,
in Example 6.2.4, we will see why. The automorphism group of L has order
2nn! and is in fact isomorphic to W (Bn); cf. Exercise 6.4.9.

In practice, we often work with a slight extension of the definition of
a lattice: we take the additive subgroup L of Rn generated by a linearly
independent set of vectors in Rn. The result L need not be a lattice of Rn

but can be seen as a lattice of a subspace of Rn. If the subspace has dimension
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m (that is, the size of an independent set of generating vectors of L is equal
to m), then we say that L has rank m.

Computing the discriminant of a lattice in Rn of rank m can be done
without a change of basis: put the vectors b1, . . . , bm generating a lattice L
inside Rn again into a matrix B. Now d(L), for L viewed as a lattice of Rm,
is the number

d(L) =
√
| det((bi, bj))1≤i,j≤m| =

√
| det(B>B)|.

It measures the m-dimensional volume of the subset [0, 1]b1 + · · · + [0, 1]bm.
To make this plausible we add basis vectors a1, . . . , an−m from {b1, . . . , bm}⊥
of length 1 and mutually orthogonal. Then compute B′>B′ for the matrix B′

containing the b’s and the a’s. Then | det(B′)| = | det(B)|.

Example 6.1.9 Let ε1, . . . , εn+1 be the standard basis of Rn+1. Consider

L = Z(ε1 − ε2) + · · · + Z(εn − εn+1)
= {(x1, . . . , xn+1) ∈ Zn+1 | x1 + · · · + xn+1 = 0}.

These are the vectors in Zn+1 that are perpendicular to the all-one-vector.
This lattice is usually denoted by L(An). It is of rank n. The set {ε1 −
ε2, . . . , εn − εn+1} is a basis of this lattice and, if B is the matrix whose
columns are these factors, then det(B>B) = n+ 1, so d(L(An)) =

√
n+ 1.

The linear transformation interchanging the i and the (i+1)-st coordinate
is an automorphism of L. Exercise 6.4.2 shows that, together with scalar
multiplication by −1, these automorphisms generate all of Aut(L), which is
a group isomorphic to Symn+1 × Z/2Z.

Definition 6.1.10 Let L be a lattice on which (·, ·) takes integer values only.
Then L is called even if (x, x) is even for all x; otherwise it is called odd . L
is called unimodular if d(L) = 1.

It is easy to see that evenness need only be checked on a set of basis
vectors. Examples of even lattices of rank n are L(Dn) and L(An) of Examples
6.1.8 and 6.1.9, respectively.

The lattice Zn is unimodular, but the lattices L(An) of Example 6.1.9
and L(Dn) of Example 6.1.8 are not.

Proposition 6.1.11 Let L and M be lattices of Rn with L ⊆ M . Then the
index [M : L] of L in M is equal to |d(L)/d(M)|.

Proof. IfX is an invertible linear transformation of Rn then d(XL)/d(XM) =
d(L)/d(M) and [XM : XL] = [M : L], so it suffices to prove the proposition
for the case whereM = Zn. Now L = L(B) for an n×nmatrix B with integer
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entries. It is well known (and easy to prove by means of elementary matrices
and permutations matrices) that there are X , Y ∈ SL(n,Z) such that XBY
has diagonal form. Now L(XBY ) = XL and L(XY ) = XZn = Zn, so we
may assume that B has diagonal form. But then |d(B)| is the number of
vectors of the form (v1, . . . , vn) with vi ∈ Z and 0 ≤ vi < |Bii|, which is equal
to [Zn : L(B)]. This establishes the proposition.

Here is another proof, which uses the classification of finite abelian groups.
The quotient group L/M is a finite abelian group and is therefore isomorphic
to some Zd1

⊕ · · · ⊕ Zdn
. So there is a matrix B whose columns b1, . . . , bn

are a basis of L such that d1b1, . . . , dnbn is a basis of M . As [L : M ] =
|L/M | = d1 · · · dn, it follows that d(M) = d1 · · · dn det(B) = [L : M ] d(L). tu

Example 6.1.12 We present four construction methods for lattices.

(i). Direct sum. An obvious way to construct lattices out of two given ones
is to take the direct sum: L ⊕M inside Rn ⊕ Rm = Rn+m whenever L is a
lattice of Rn and M a lattice of Rm. Then d(L⊕M) = d(L) d(M).

(ii). Construction using linear binary codes. Let µ: Zn → Fn
2 be coor-

dinatewise reduction mod 2 and let C ⊂ Fn
2 be a linear binary [n, k, d]-code.

This means that C is a linear subspace of Fn
2 of dimension k such that each

vector in C has at least d nonzero entries. The number of nonzero entries
of a vector is called its weight . Then µ is a surjective homomorphism of ad-
ditive groups. By the First Isomorphism Theorem for groups, µ−1(0) is a
subgroup of Zn of index |Fn

2 | = 2n, and so µ−1(C) is a subgroup of Zn of
index 2n/|C| = 2n−k. Therefore, µ−1(C) is a Euclidean lattice of Rn, with
index 2n−k in Zn. We normalize the lattice by dividing by

√
2:

L(C) =
1√
2
µ−1(C).

This lattice takes integer values if and only if C ⊆ C⊥, where ⊥ is taken with
respect to the standard inner product on Fn

2 . It is even if, in addition, all the
weights are divisible by 4. Finally, d(L(C)) = 2

n
2
−k, so L(C) is unimodular

if and only if C = C⊥. This property of C is referred to as self-duality in
Coding Theory.

(iii). A variation on this theme. Consider

g: Zn → F2, g(x) =
∑

i

xi (mod 2).

Then g−1(0) ⊂ Zn is the lattice L(Dn) we constructed earlier. For n divisible
by 4 add vectors: L(Dn)+ 1

2Ze, with e the all-one vector. For n divisible by 8
this is an even unimodular lattice. For n = 8 it is called L(E8). See Exercise
6.4.10.

(iv). Sublattices. Any subgroup of a lattice is again a lattice, possibly of
lower rank. For example, intersect the lattice with the space perpendicular
to some vectors. This is how we obtained L(An) from the lattice Zn+1 of Rn.
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For L(E8), defined in (iii), take α⊥ for some α ∈ L(E8) satisfying (α, α) =
2. It does not matter which one as Aut(L) is transitive on the set of vectors
of L with square norm 2 (see Exercise 6.4.10) and so the resulting lattice is
determined up to similarity. This lattice is called L(E7).

Take the space {α, β}⊥ in L(E8), where (α, α) = (β, β) = 2, (α, β) = 1.
Such pairs α, β exist and the choice is again irrelevant; see Exercise 6.4.10.
The resulting lattice is called L(E6).

Definition 6.1.13 If L is a lattice of Rn, then its dual lattice is the lattice

L◦ := {z ∈ Rn | ∀v∈L (v, z) ∈ Z}.

The dual L◦ is also a lattice of Rn, but the standard inner product may
assume non-integral values as will be clear from the example L = 2Z in R1.

Proposition 6.1.14 Let L be a lattice in Rn.

(i) d(L◦) = 1/d(L).
(ii) L is integer-valued if and only if L ⊂ L◦.
(iii) If L is integer-valued, then L = L◦ if and only if L is unimodular.

Proof. Let B be a matrix whose columns are a basis of L, so L = L(B). Let
B◦ be the matrix whose columns form the dual basis of B. Then B>B◦ = I
and L◦ = L(B◦).

(i). Now d(L◦) = | det(B◦)| = | det(B>)|−1 = 1/d(L).

(ii). The ‘only if’ part follows directly from the definition of L◦.
If L ⊆ L◦, then there is an n× n-matrix Y with integer entries such that

B = B◦Y . It follows that B>B = Y , so L is integer-valued. This proves the
‘if’ part of (ii).

(iii). Suppose that L is integer-valued. Then L ⊆ L◦ by (ii) and d(L) =
d(L◦) [L◦ : L] by Proposition 6.1.11, so, by (i), d(L) =

√
[L◦ : L]. In par-

ticular, L is unimodular if and only if [L◦ : L] = 1, which is equivalent to
L◦ = L. tu

6.2 Weyl groups

Suppose that L is a lattice in Rn, supplied with the standard inner product
(·, ·). By Exercise 6.4.1, for nonzero v ∈ L, the orthogonal reflection rv with
respect to (·, ·) on Rn (defined in Exercise 3.4.5) belongs to Aut(L) if (v, v) ∈
{1, 2}. More generally, if 2(w, v)/(v, v) ∈ Z for all w ∈ L, then rv(z) is an
integral linear combination of elements of L for each z ∈ L, so rv preserves
the lattice L and rv ∈ Aut(L). Since the automorphism group of a lattice of
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Rn is finite (cf. Corollary 6.1.3), such rv generate a finite reflection group.
The set of all roots v ∈ L such that 2(w, v)/(v, v) ∈ Z for all w ∈ L, comes
close to satisfying the following properties.

Definition 6.2.1 Let V be a real vector space of finite dimension, supplied
with a positive-definite symmetric bilinear form (·, ·). An integral root system
in V is a finite spanning subset Φ of V with α 6= 0 for each α ∈ Φ such that
the following two conditions hold.

(i) For each α ∈ Φ, the orthogonal reflection rα preserves Φ.
(ii) For all α, β ∈ Φ, the number 2(β, α)/(α, α) is an integer.

If in addition, for all λ ∈ R and α ∈ Φ,

λα ∈ Φ if and only if λ = ±1,

then Φ is called restricted . The lattice ZΦ spanned by Φ is called the root
lattice of Φ. The group generated by all reflections of the form rα for α ∈ Φ
is called the reflection group of Φ and denoted by W (Φ). The rank of the
integral root system is the rank of ZΦ.

By Theorem 5.1.4, W (Φ) is a Coxeter group. Its Coxeter type is called
the type of Φ.

Two integral root systems Φ and Φ′ in V , respectively V ′, are isomorphic
if there is an invertible linear transformation g : V → V ′ respecting inner
products such that gΦ = Φ′.

Comparing the above with Definition 4.1.1 of a root system, we see that
scaling the roots occurring in an integral root system Φ so as to make the
square norm of each root equal to 2 gives a root system. However, in a root
system, Condition (ii) of an integral root system need not be satisfied. Indeed,
a root system need not be an integral root system. If it is, then the integral
root system is even a restricted integral root system.

Remark 6.2.2 Suppose that Φ is an integral root sytem. If λ ∈ R and
α ∈ Φ satisfy λα ∈ Φ, then 2/λ = 2(α, λα))/(λα, λα) is an integer, so λ =
±1,±2. Therefore, the only positive scalars that may lead to roots in Φ after
multiplication with a root already in Φ are 1

2 , 1, and 2.
Figure 6.1 depicts an integral root system of rank 2 that is not restricted;

its type is known as BC2. Its reflection group is the Coxeter group of type
B2. This is typical of the general picture in that no new Coxeter groups arise
when non-restricted integral root systems are taken into account.

As W (Φ), for Φ an integral root system, is a finite group generated by
reflections, it is a Coxeter group by Theorem 5.1.4. We investigate which
Coxeter systems give rise to integral root systems. First we deal with simply
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Fig. 6.1. The integral root system of type BC2.

laced types, that is, Coxeter diagrams in which each edge {i, j} has label
mij = 3.

Recall that, if W is finite of rank n, Proposition 5.3.2 gives that the
image of W under the reflection representation ρ : W → GL(Rn) leaves
invariant the positive-definite symmetric bilinear form B on Rn. Therefore,
in this case, after a suitable coordinate transformation, we can view ρ as a
map W → O(n,R). Recall the definition of root system in Definition 4.1.1;
it made use of the reflection representation ρ.

Lemma 6.2.3 Let (W,S) be a finite Coxeter system of simply laced type M .
Let ρ : W → O(n,R) be its reflection representation. Then the root system Φ
in Rn corresponding to ρ is a restricted integral root system in V , and so ZΦ
is a W -invariant lattice of Rn.

Proof. Each root ei for i ∈ [n] belongs to Φ and, by construction, Φ is a
W -invariant set of roots in Rn. Clearly, B(α, α) = 2 for each α ∈ Φ and Φ
spans V .

We verify the conditions (i) and (ii) of Definition 6.2.1. Condition (i) is
obvious from the construction of Φ. As an arbitrary root in Φ can be mapped
by an element of W to a root ei for some i ∈ [n], for the proof of Condition
(ii), it suffices to verify that B(wei, ej) ∈ Z for all i, j ∈ [n] and w ∈ W .
We prove this by induction on l(w). For l(w) = 0, we have w = 1 and
B(ei, ej) = −2 cos(π/mij) ∈ {0,−1, 2} as mij ∈ {1, 2, 3}.

Assume therefore l(w) > 1 and write w = su with s ∈ S and l(w) =
1 + l(u). Then, by the induction hypothesis, B(uei, ep) ∈ Z for each p ∈ [n]
and so B(suei, ej) = B(uei, sej) = B(uei, ej) − B(uei, es)B(es, ej) ∈ Z,
proving (ii). The conclusion is that Φ is indeed an integral root system.

It remains to show that Φ is restricted. By restriction to components
of M , cf. Proposition 2.2.5, it suffices to show this in the case where M is
irreducible. Then Φ = We1 as ej = sisjei if {i, j} is an edge of M . Suppose
that, for some λ ∈ R and α ∈ Φ, we have λα ∈ Φ. Then there are w1, w2 ∈W
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such that α = w1e1, and λα = w2e1, so w = w2w
−1
1 satisfies wα = λα,

whence
2λ2 = B(λα, λα) = B(wα,wα) = B(α, α) = 2,

proving λ = ±1. Hence Φ is restricted. tu

Example 6.2.4 We discuss the three series of simply laced diagrams of finite
Coxeter groups; (cf. Theorem 5.3.3).

Dn (for n ≥ 4). After a suitable change of basis, which transforms B to the
standard inner product, the integral root system of the Coxeter group of type
Dn in Rn becomes

Φ = {±εi ± εj | 1 ≤ i < j ≤ n}.

Clearly, (x, x) = 2 for all x ∈ Φ, so Φ is a restricted integral root system
indeed. The root lattice is the lattice L(Dn) introduced in Example 6.1.8. It
is generated by the roots

ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn.

The automorphism group of L(Dn) is the group generated by the elements
which induce sign changes and by elements which permute the coordinates;
see Exercise 6.4.9. It is a group of order 2n · n! The reflections rv with v ∈ Φ
generate a subgroup of order 2n−1 ·n! It is the Coxeter group of type Dn with
which we started and has index 2 in Aut(L(Dn)).

An (n ≥ 1). Here the integral root system is

Φ = {±(εi − εj) | 1 ≤ i < j ≤ n+ 1} .

There are exactly (n+ 1)n roots in Φ. Its root lattice is L(An) as introduced
in Example 6.1.9. The automorphism group Aut(L(An)) is the direct product
of the Coxeter group W (An) ∼= Symn+1 (acting by permutations of the co-
ordinates) and the group of order two generated by the scalar multiplication
by −1; see Exercise 6.4.2. The case n = 2 is depicted in Figure 4.1.

En (n = 6, 7, 8). First consider n = 8 and take Φ to be the root system
described in Exercise 5.4.4, that is,

Φ = {±εi ± εj | 1 ≤ i < j ≤ 8}

∪
{

1

2

∑

i

(−1)miεi

∣∣∣∣∣
∑

i

mi ≡ 0 (mod 2)

}
.

Then Φ is again a restricted integral root system and so the Coxeter group
W (E8) leaves invariant the root lattice ZΦ = L(E8).

Likewise, the roots for E7 and E6 in Φ lead to integral root systems for
W (E7) andW (E6), respectively, and to corresponding lattices. These coincide
with the lattices L(E8), L(E7), L(E6) found in Example 6.1.12.

By Exercise 6.4.11, d(L(E8)) = 1, d(L(E7)) =
√

2, d(L(E6)) =
√

3.
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The construction of an integral root system from the reflection represen-
tation of a Coxeter group in the above example can also be carried out in
certain cases where the Coxeter matrix has entries greater than 3. In or-
der to determine exactly which irreducible Coxeter groups have integral root
systems, we start with the analysis of the 2-dimensional case.

Example 6.2.5 Let W be a finite Coxeter group of type M = (mij)1≤i,j≤2

of rank 2 with m = m12 ∈ {2, 3, 4, 6}. In these cases, B is positive definite
by Proposition 5.3.2. Starting from the root system corresponding to the
reflection representation, cf. Definition 4.1.1, we produce an integral root
system in each case. Recall that the root system is of the form We1 ∪We2
with B(e1, e1) = B(e2, e2) = 2 and B(e1, e2) = −2 cos(π/m).

For m = 2, we have M = A1 × A1. The set

Φ(A1 × A1) = {±e1,±e2}

is easily seen to be an integral root system.
For m = 3, we have M = A2, which has been dealt with in Example 6.2.4.
For m = 4, we have M = B2 and B(e1, e2) = −

√
2. The set

Φ(B2) = {±e1,±
√

2e2,±(e1 +
√

2e2),±(2e1 +
√

2e2)}

is an integral root system. See Figure 6.2.
For m = 6, we have M = G2 and B(e1, e2) = −

√
3. The set

Φ(G2) = {±e1,±
√

3e2,±(e1 +
√

3e2),

±(2e1 +
√

3e2),±(3e1 +
√

3e2),±(3e1 + 2
√

3e2)}

is an integral root system. See Figure 6.3.

It is not true that the reflection representation of every finite Coxeter
group gives an integral root system. For example H2 does not, see Exer-
cise 6.4.12. The key condition is that there be a W -invariant lattice in the
reflection representation space.

Definition 6.2.6 Let (W,S) be a finite Coxeter system of rank n and let
ρ : W → O(n,R) be its reflection representation (the image is in O(n,R)
by Proposition 5.3.2). Then W is called a Weyl group if there is an ρ(W )-
invariant lattice in Rn.

Lemma 6.2.7 Let (W,S) be a Coxeter system of rank n = 2 whose Coxeter
matrix M has off-diagonal entry m = m12 with 1 < m < ∞. Let ρ be
the reflection representation of W in R2. Then the following statements are
equivalent.
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Fig. 6.2. The integral root system of type B2.

Fig. 6.3. The integral root system of type G2.

(i) The group W is a Weyl group.
(ii) There is an integral root system Φ in R2 whose corresponding group

W (Φ) coincides with ρ(W ).
(iii) m = 2, 3, 4, or 6.

Proof. Let S = {s1, s2}. The group ρ(W ) is generated by the two orthog-
onal reflections ρ1 = ρ(s1) and ρ2 = ρ(s2), with respect to the symmetric
bilinear form B defined in (2.2) and with roots e1, e2, respectively, such
that B(e1, e1) = B(e2, e2) = 2 and B(e1, e2) = −2 cos(π/m). By Proposition
5.3.2, B is positive definite and so can be identified with the standard inner
product after a coordinate transformation.

(i)⇒(iii). Let L be a ρ(W )-invariant lattice of R2. Let i = 1, 2. Since B is
positive definite, it is nondegenerate, so there is v ∈ L such that B(v, ei) 6= 0.
Therefore B(v, ei)ei = (1 − ρi)v ∈ L. This shows that a nonzero scalar
multiple µiei of ei belongs to L. Since v ∈ L implies −v ∈ L, we may
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suppose, without loss of generality, that µi > 0. Moreover, L is a discrete
subgroup of R2, so we can take µi minimal in R>0 such that µiei ∈ L.

Taking i = 2 and v = µ1e1 ∈ L in the above argument, we see that
(1 − ρ2)µ1e1 = −2µ1 cos(π/m)e2 also belongs to L. In particular, by mini-
mality of µ2, we have 2µ1 cos(π/m)/µ2 ∈ Z>0. Similarly, for i = 1, we find
2µ2 cos(π/m)/µ1 ∈ Z>0.

Multiplying the two scalars and putting µ = µ1/µ2, we find a non-negative
integer d with

2 cos(π/m) =
√
d and

√
d/µ, µ

√
d ∈ Z. (6.2)

But, as m ∈ [2,∞), the quantity 2 cos(π/m) is less than 2, so d = 0, 1, 2, 3,
and m = 2, 3, 4, 6 in the respective cases. This proves (iii).

(iii)⇒(ii). The existence of an integral root system in these cases is established
in Example 6.2.5.

(ii)⇒(i). The lattice ZΦ suffices for the proof of this implication. tu

The above result does not yet precisely determine the integral root sys-
tems. For the casem = 2, or type A1×A1, the roots e1 and e2 can be replaced
by any scalar multiple, but the other cases are (irreducible and) more rigid.

Corollary 6.2.8 Suppose that (W,S) is a finite irreducible Coxeter system
of rank 2 such that W is a Weyl group. Then the type M of (W,S) is one
of A2, B2, or G2 and, up to an interchange of e1 and e2, the integral root
systems afforded by the reflection representation ρ of W in R2 are as described
in Example 6.2.5. In particular, the following lattices are ρ(W )-invariant.




L(A2) = Ze1 + Ze2 in case of A2,
L(B2) = Z

√
2e1 + Ze2 in case of B2,

L(G2) = Ze1 + Z
√

3e2 in case of G2.

The interchange of e1 and e2 would lead to isomorphic integral root sys-
tem, and so there is no loss of generality in allowing it.
Proof. The type A1 × A1 is ruled out by the irreducibility condition.

Let Φ be an integral root system for ρ(W ). As we have seen in the proof
of Lemma 6.2.7, this implies, for d = 1, 2, 3 and µ = µ1/µ2 as before, that
(6.2) must hold. As

√
d/µ, µ

√
d ∈ Z, there is an integer divisor g of d such

that µ =
√
d/g. But then g = d or g = 1, which leads to the following five

possibilities.

(d, µ,m) = (1, 1, 3), (2,
√

2
±1
, 4), (3,

√
3
±1
, 6).

Now, for fixed m = 4, 6, the two distinct possibilities differ from each other
by an interchange of e1 and e2. Hence the integral root systems must be
as claimed. tu
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The classification of Weyl groups of higher rank follows directly from the
lemma.

Theorem 6.2.9 The following properties for a finite Coxeter system (W,S)
of type M with reflection representation ρ : W → O(n,R) are equivalent.

(i) W is a Weyl group.
(ii) There is a restricted integral root system Φ such that W (Φ) = ρ(W ).
(iii) The Coxeter matrix M = (mij)ij satisfies mij ∈ {2, 3, 4, 6} for all

1 ≤ i < j ≤ n.

Moreover, the reflection representation of each irreducible Weyl group of rank
n > 2 has a single integral root system in the space Rn, with the exception of
Bn, in which case there are two integral root systems, viz.,

Bn : Φ = {±εi ± εj | 1 ≤ i, j ≤ n} ∪ {±εi | 1 ≤ i ≤ n},
Cn : Φ = {±εi ± εj | 1 ≤ i, j ≤ n} ∪ {±2εi | 1 ≤ i ≤ n},

where ε1, . . . , εn is the standard orthonormal basis of Rn.

In other words, the irreducible Coxeter groups that are Weyl groups have
type An (n ≥ 1), Bn (n ≥ 2) with two non-isomorphic integral root systems
for n ≥ 3 (one of type Bn and the other of type Cn), Dn (n ≥ 4), E6, E7, E8,
F4, G2.

Proof. If W has rank 1, there is nothing to prove. So we may assume that W
has rank n ≥ 2. Moreover, a reducible Coxeter group is easily seen to have
any of the three properties if and only if the properties hold for each of its
irreducible components. Thus, we may also assume that W is irreducible.

(i)⇒(iii). Suppose that (i) holds. Then there is a W -invariant lattice L con-
taining a scalar multiple of each root. The restriction of 〈si, sj〉 to Rei + Rej

satisfies Condition (ii) of Lemma 6.2.7, so mij ∈ {2, 3, 4, 6}, whence (iii).

(ii)⇒(i). This follows directly from the definition of Weyl group as ZΦ is a
ρ(W )-invariant lattice.

(iii)⇒(ii). Assume that (iii) holds. If all mij ∈ [3], then M is simply laced and
we can apply Lemma 6.2.3. Assume therefore, that there are i, j ∈ [n] with
mij > 3. Somij ∈ {4, 6}. If n = 2, assertion (ii) follows from Lemma 6.2.7. So,
we may assume n > 2. By inspection of the list of all finite irreducible Coxeter
groups, we find that mij = 4 andWei∪Wej is a root system forW . As usual,
we write S = {s1, . . . , sn}. Corollary 6.2.8 shows that, up to an interchange
of i and j, for some µ ∈ R the lattice Zei +Zµej of U = Rei +Rej is invariant
under the restriction of Wij = 〈si, sj〉 to U and contains the integral root
system Wijei ∪ µWijej in U with reflection group Wij . We show that

Φ = Wei ∪ µWej
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is a restricted integral root system in Rn with W (Φ) = ρ(W ). In fact, the
only hard part is to establish Condition (ii) of Definition 6.2.1. This condition
is a consequence of the claim that

2B(w(µpep), µqeq)

B(µqeq, µqeq)
= µp/µqB(wep, eq) ∈ Z

for all p, q ∈ N and w ∈ W , where µk = µj if ek ∈Wej and µk = 1 otherwise
(that is, ek ∈ Wei). The assertion in turn can be shown to hold by induction
on l(w), similarly to the proof of Lemma 6.2.3. For w = 1, it follows from
Corollary 6.2.8. For l(w) > 1, take k ∈ [n] and u ∈ W such that w = sku
with l(w) = 1 + l(u). Then

µp/µqB(ρ(sku)ep, eq) = µp/µqB(ρ(u)ep, ρkeq)

= µp/µqB(uep, eq) − (µk/µqB(ek, eq)) (µp/µkB(uep, ek))

is an integer in view of the induction hypothesis. Hence (ii).

In order to establish the final assertion of the theorem about integral root
systems, observe that, if n > 2, we have mij = 4 as in the proof of the last
implication, so the only case where ambiguity in a 2-dimensional subsystem
may arise is B2. Indeed, here it matters whether we take

√
2en−1, en ∈ Φ

or en−1,
√

2en ∈ Φ for our choice of integral root system Φ. For the
Coxeter diagram Bn, the first possibility leads to Bn, the second to Cn.
For the Coxeter diagram F4, the distinction is irrelevant as there is a
diagram symmetry interchanging the roles of i and j in the proof of the
last implication. tu

If n ≥ 3, the root lattices for Bn and Cn are not similar to each other, as
the number of roots closest to the origin in L(ZΦ) is 2n(n − 1) for Bn and
2n for Cn.

6.3 Finite subgroups

Let (W,S) be a Coxeter system of type M and finite rank n. In this section
we show that, up to conjugacy, the maximal finite subgroups of W are of the
form WJ for J ⊆ S (cf. Notation 4.2.5). In view of the classification of finite
Coxeter groups, Theorem 5.3.3, this fully determines the finite subgroups of
W .

Recall from Definition 2.3.6 the reflection representation ρ : W → GL(V )
and from Definition 3.3.1 the contragredient representation ρ∗ : W →
GL(V ∗) on the dual of V . For each s ∈ S, we put As = {f ∈ V ∗ | f(es) > 0}
and we set A =

⋂
s∈S As. Furthermore, we take A to be the topological clo-

sure of A, that is, A = {f ∈ V ∗ | ∀s∈S f(es) ≥ 0}. For f ∈ V ∗, we denote by
Wf the stabilizer in W of f , that is, the subgroup {w ∈ W | wf = f} of W ,
where wf is short for ρ∗(w)f . It can be characterized as follows.
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Proposition 6.3.1 For each f ∈ A and J = {s ∈ S | f(es) = 0}, we have

WJ = Wf = {w ∈W | wf ∈ A}.

Proof. WJ ⊆ Wf . Let s ∈ J . Then, by definition, f(es) = 0, so, for x ∈ V ,
we have sf(x) = f(sx) = f(x) −B(x, es)f(es) = f(x), which shows s ∈ Wf ,
and hence WJ = 〈J〉 ⊆Wf .

Wf ⊆ {w ∈ W | wf ∈ A}. This is immediate as f ∈ A and w ∈ Wf means
wf = f .

{w ∈ W | wf ∈ A} ⊆ WJ . Let w ∈ W and g ∈ A be such that g = wf .
If w = 1, then clearly w ∈ WJ and we are done. We proceed by induction
on l(w) and assume l(w) > 0. Then there is s ∈ S with l(ws) < l(w). By
Proposition 4.1.2, wes ∈ Φ−, so, as g ∈ A,

0 ≤ f(es) = w−1g(es) = g(wes) ≤ 0.

Therefore, f(es) = 0, which gives s ∈ J . As WJ ⊆ Wf (see above), we
also have sf = f . Consequently, (ws)f = wf = g ∈ A. By induction,
ws ∈ WJ , and so w = (ws)s ∈ WJ , as required. tu

For f ∈ V ∗, write Φf = {α ∈ Φ+ | f(α) < 0}. Notice that

A = {f ∈ V ∗ | ∀s∈S αs 6∈ Φf} = {f ∈ V ∗ | Φf = ∅}.

Proposition 6.3.2 The union of A and its images under W satisfies

⋃

w∈W

wA = {f ∈ V ∗ | |Φf | <∞}.

Proof. ⊆. Let w ∈ W and f ∈ A. Recall Φw from (4.1). If α ∈ Φ+ and
w−1α ∈ Φ+, then (wf)α = f(w−1α) ≥ 0 and so

Φwf = {α ∈ Φ+ | f(w−1α) < 0} ⊆ {α ∈ Φ+ | w−1α ∈ Φ−} = Φw−1 .

By Corollary 4.1.5, the right hand side is finite, and so Φwf is finite. This
proves

⋃
w∈W wA ⊆ {f ∈ V ∗ | |Φf | <∞}.

⊇. Suppose f ∈ V ∗ satisfies |Φf | < ∞. We will show that f ∈ wA for some
w ∈ W . If |Φf | = 0, then, by the observation preceeding the proposition,
f ∈ A, and we are done with w = 1. We proceed by induction on |Φf |.
Assume |Φf | > 0, so there is s ∈ S with f(es) < 0. Now es 6∈ Φsf as
sf(es) = f(ses) = −f(es) > 0. But s preserves Φ+\{es} by Corollary 4.1.5,
and, for β ∈ Φ+\{es}, we have β ∈ Φsf if and only if f(sβ) < 0, which is
equivalent to sβ ∈ Φf . Therefore, Φsf = s(Φf\{es}), which has cardinality
|Φf | − 1. By the induction hypothesis applied to sf , we find sf = uA for
some u ∈ W , and so f ∈ suA, as required. This proves the proposition. tu
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Definition 6.3.3 Let (W,S) be a Coxeter system. A parabolic subgroup of
W is a subgroup that is conjugate in W to a subgroup of the form WJ for
some J ⊆ S.

Theorem 6.3.4 Let (W,S) be a Coxeter system of finite rank. If H is a
finite subgroup of W , then H is contained in a finite parabolic subgroup of
W .

Proof. If W is finite, then the choice J = S and w = 1 suffice, so assume W
is of infinite order. Then, by Theorem 5.2.4, Φ is infinite as well. It follows
that |S| > 1. We proceed by induction on |S|.

Let f ∈ A and take g =
∑

h∈H hf . Then, for each h ∈ H ,

hg =
∑

k∈H

hkf =
∑

k∈H

kf = g,

so H ⊆ Wg . By Proposition 6.3.2, Φhf is a finite set for each h ∈ H , so⋃
h∈H hΦf is a finite subset of the infinite set Φ+. Consequently, there is

α ∈ Φ+\⋃h∈H hΦf . Now, for each h ∈ H , we have h−1α 6∈ Φf , so hf(α) ≥ 0,
and hence g(α) ≥ 0, that is, α 6∈ Φg . Therefore, Φg is contained in the finite set⋃

h∈H hΦf , and so is finite. By Proposition 6.3.2 this implies that v−1g ∈ A
for some v ∈W . Now, for each h ∈ H , we have v−1hv(v−1g) = v−1hg = v−1g,
so v−1hv ∈Wv−1g . By Proposition 6.3.1, setting T = {s ∈ S | v−1g(es) = 0},
we find v−1Hv ⊆WT .

Also, as f(α) > 0 and hf(α) ≥ 0 for each h ∈ H , we have g(α) > 0.
This gives g 6= 0. If T = S, then v−1g(es) = 0 for each s ∈ S, so g = 0,
a contradiction. So |T | < |S| and we can apply induction to the finite
subgroup v−1Hv of the Coxeter group WT . This gives a subset J of T
and an element u of WT such that WJ is finite and v−1Hv ⊆ uWJu

−1, so
vuWJ (vu)−1 is a finite parabolic subgroup of W containingH , as required. tu

6.4 Exercises

Section 6.1

Exercise 6.4.1 Let v be a nonzero vector of the lattice L with square norm
(v, v) = 1 or (v, v) = 2. Prove that rv ∈ Aut(L).

Exercise 6.4.2 (Cited in Examples 6.1.9 and 6.2.4) Prove that the automor-
phism group of the lattice L(An), defined in Example 6.1.9, is isomorphic to
Symn+1 × (Z/2Z).
(Hint: Show that {±ε1, . . . ,±εn+1} is a single orbit under Aut(L), apply
Lagrange’s theorem to this orbit (which states that the length of an orbit
multiplied by the size of the stabilizer of a member of the orbit equals the
order of the group), and use induction on n to determine the size of the
stabilizer of ε1; take care of scalar multiplication by −1.)
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Exercise 6.4.3 Suppose that Y is a finite subset of Rn with (x, y) ∈ Z for
all x, y ∈ Y . Is ZY := {∑y∈Y ayy | ay ∈ Z} a lattice of Rn?

Exercise 6.4.4 Let A and B be square matrices whose entries are rational
with nonzero determinants. Show that L(A) ⊆ L(B) if and only if there is
a matrix P with integer entries but inside GL(n,Q) (that is, invertible over
the rationals) such that A = BP .

Exercise 6.4.5 Let A be a square matrix with rational entries and nonzero
determinant. Prove that L(A)◦ = L(A−>). Conclude that [L(A)◦ : L(A)] is
equal to the discriminant of L(A).

Section 6.2

Exercise 6.4.6 As usual, denote by (·, ·) the standard inner product on Rn.
Let L be a lattice of Rn and let Φ be the set of all vectors v ∈ L such that
2(w, v)/(v, v) ∈ Z for all w ∈ L. Suppose that Φ is non-empty. Show that Φ is
an integral root system in the linear subspace of Rn spanned by Φ and that
W (Φ) is a subgroup of Aut(L).

Exercise 6.4.7 Let Φ be an integral root system of type M . Prove that the
additive group (ZΦ)◦/ZΦ has the following structure in the respective cases.

(a) For M = An, cyclic of order n+ 1.
(b) For M = Dn with n odd, cyclic of order 4.
(c) For M = Dn with n even, the direct product of two cyclic groups of order

2 (the Klein Four group).

Exercise 6.4.8 Recall from the proof of Lemma 6.2.7 what the integral root
systems of rank 2 look like in terms of the roots e1, e2. In Example 4.1.6 we
have described Φ for An in terms of the standard basis ε1, . . . , εn+1 of Rn+1

and in Theorem 6.2.9 we have given Φ for Bn in terms of the standard basis
of Rn. Give a similar description of the integral root system of type G2 in
terms of integer linear combinations of the standard basis of R3.

Exercise 6.4.9 Consider the lattice L = L(Dn) of Example 6.1.8.

(a) Verify that the set of vectors in L of square norm 2 is isomorphic to the
root system of type M , where M = A1 if n = 1, M = A1 ∪̇A1 if n = 2,
M = A3 if n = 3, and M = Dn if n ≥ 4.

(b) Let M be as in (a) and n ≥ 2. Prove that group generated by the orthog-
onal reflections rv for v ∈ L with (v, v) = 2 is a Coxeter group of type
M .

(c) Prove that the group generated by the orthogonal reflections rv for v ∈ L
with (v, v) = 2 is a Coxeter group of type M .
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(d) Prove that the automorphism group of L is isomorphic to W (Bn) for
n ≥ 2.

Exercise 6.4.10 Prove the following assertions regarding the lattice L =
L(E8) of Example 6.1.12(iii).

(a) L = Zα1 + Zα2 + · · · + Zα8, where α1, . . . , α8 are as in Exercise 5.4.4.
(b) Let Φ be the set of vectors in L of square norm 2. Then Φ is a root system

of type E8 and L = ZΦ.
(c) The group W (Φ) is a subgroup of Aut(L(E8)) and acts transitively on Φ.
(d) Put α0 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8. Then α0 is

orthogonal to each αi for i ∈ [7] and (α0, α8) = 1.
(e) The set α⊥

0 ∩Φ is an integral root system in α⊥
0 of type E7 and W (α⊥

0 ∩Φ)
has a single orbit of roots β ∈ Φ with (α0, β) = 1. In particular, W (Φ)
acts transitively on the set of pairs (α, β) in Φ× Φ with (α, β) = 1.

Exercise 6.4.11 Prove that d(L(En)) = 1,
√

2,
√

3 for n = 8, 7, 6, respec-
tively.

Exercise 6.4.12 Let (W,S) be the Coxeter system of type H2 and set τ =
2 cos(π/5) − 1 = 2 cos(2π/5).

(a) Express the five positive roots as linear combinations of the fundamental
roots ∆ = {e1, e2} with coefficients in the ring Z[τ ].

(b) Prove that, in the usual reflection representation, W (H2) leaves invariant
the additive subgroup Z[τ ]e1 + Z[τ ]e2 of R2, but no lattice of R2.

Exercise 6.4.13 Show that, in Example 6.2.4, the simply laced case, all
inner products of roots are in {0,±1,±2}.

Exercise 6.4.14 Let L be a lattice of Rn and let p be a prime.

(a) Show that Aut(L) leaves invariant the set pL of scalar multiples of mem-
bers of L by p. Conclude that there is a linear action of the group Aut(L)
on L/pL.

(b) Verify that L/pL ∼= (Z/pZ)n and conclude that the action of (a) gives a
homomorphism of groups Aut(L) → GL((Z/pZ)n).

(c) Suppose that L is integer valued. Prove that the image of the homomor-
phism in (b) lies in the orthogonal group with respect to the symmetric
bilinear form κ on (Z/pZ)n given by κ(x+pL, y+pL) = (x, y) (mod p)
for x, y ∈ L.

(d) Let L be the lattice L(E8) of Example 6.1.12(iii). Prove that κ is non-
degenerate and determine the kernel of the homomorphism of (c) in the
case where p = 2.
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Section 6.3

Exercise 6.4.15 Let W be a Coxeter group. Prove that V ∗ =
⋃

w∈W wA if
and only if W is finite.

Exercise 6.4.16 Let (W,S) be a Coxeter system.

(a) Prove that, for each J ⊆ S, the subgroup WJ is the stabilizer of a vector
in A.
(Hint: Consider

∑
s∈S\J fs, where fs (s ∈ S) is the dual basis of es

(s ∈ S).)
(b) Conclude that each parabolic subgroup of W is the stabilizer of a vector

in
⋃

w∈W wA.

Exercise 6.4.17 Let W be the Coxeter group of type E6. Determine if the
subgroups W{1,3} and W{5,6} are conjugate in W .

Exercise 6.4.18 Let T be the group with presentation

T = 〈u, t | u3 = t2 = (ut)7 = 1〉.

(This group as acts on the hyperbolic plane in a manner consistent with the
tiling of Figure 1.4.)

(a) Prove that there is an automorphism β of T such that β(u) = u−1 and
β(t) = utu−1.

(b) Verify that β has order 2 and conclude that the semi-direct product
W = T o 〈b〉, where 〈b〉 is the cyclic group of order 2, is well defined by
bx = β(x)b for each x ∈ T .

(c) Consider the elements a = u−1b and c = tu−1b of W . Prove that
(W, {a, b, c}) is a Coxeter system of type

◦
a

◦
b

7
◦
c

and that T consists of the elements in W of even length with respect to
{a, b, c}.

(d) Which numbers occur as orders of finite elements of T ?
(Hint: Apply the theory to W first.)

6.5 Notes

Section 6.1. The material on lattices of this section is quite standard. A good
introduction to the basics of lattices is in [33].
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Section 6.2. In [2] and at many other places, an integral root system as
introduced in Definition 6.2.1 is called a root system. Our notion of root
system (Definition 4.1.1) is the one from [13].

There is also a characterization of Coxeter types whose corresponding
Coxeter groups leave invariant an additive subgroup of the space of the re-
flection representation isomorphic to Zn. Here the symmetric bilinear form is
no longer positive definite, and the notion of lattice refers only to its structure
as an abelian group. To distinguish such lattices from those handled in this
chapter, the latter are usually called Euclidean lattices. Examples in which
the form B is positive semi-definite are the so-called affine Weyl groups.

Weyl groups distinguish themselves from other Coxeter groups in that
they occur in the normalizers of maximal tori (abelian subgroups all of whose
elements are diagonizable in linear representations) of complex Lie groups.
Cartan and Killing recognized the importance of root systems for Lie groups.
A systematic treatment in connection with algebraic groups is found in the
work of Chevalley. See [34] for an excellent treatment.

We did not treat root data, which is a slightly more general treatment
of root systems. These provide a more symmetric treatment with respect to
duality and furnish convenient combinatorial data for the classification of
algebraic groups. They originate from work by Demazure and Grothendieck;
see [34] again.

Section 6.3. The treatment mainly follows [19]. There are many more
results on reflection subgroups, with which we have not dealt. For instance,
Dyer’s proofs that every subgroup generated by reflections in the reflection
representation is again a Coxeter group, see [15].

Another interesting treatment of subgroups of Coxeter groups, in general
not generated by reflections but still isomorphic to Coxeter groups, is due to
Mühlherr [26]. Some of the resulting subgroups play a role as relative Weyl
groups in fixed point subgroups of algebraic groups, as can be found in work
of Borel and Tits and of Satake [35].



7. Coxeter groups are automatic

If A is an alphabet, then M(A) is the set of words in A. It is a monoid,
encountered in Definition 2.1.1. A language over A is understood to be a
subset of M(A).

Among the simplest languages in many senses are so-called regular lan-
guages. These languages and their connection with finite state automata are
basic topics in computer science. We provide an ultra-brief introduction into
automata (see Section 7.1). The material has been very well covered in many
textbooks.

In this chapter, we will show that, for each Coxeter system (W,S) of finite
rank, a regular language L over S exists such that the restriction to L of the
usual map δ : M(S) → W (of Remark 2.1.6) is a bijection. This observation
can be turned into a method for rewriting an arbitrary element a ∈ M(S) to
the unique member of L ∩ δ−1(δ(a)), but this will not be discussed here.

In Section 7.2, we derive properties of the root system Φ, the most impor-
tant of which is the finiteness of a certain set E (see Theorem 7.2.9) whose
subsets will play a role in the construction of a finite state automaton ac-
cepting the regular language corresponding to W . Section 7.3 is devoted to
this construction; the main result is Theorem 7.3.7.

7.1 Automata

Regular languages can be defined in various ways. We start with an approach
using finite state automata.

Definition 7.1.1 A finite state automaton over the alphabet A consists of
a finite set S of states and a transition map τ : A× S → S. Moreover, there
is a distinguished initial state S0 ∈ S and a partition of S into accept states
Sy and reject states Sn. The map τ describes an action of the monoid M(A)
(see Definition 2.1.1) on S determined by τ(a)X = τ(a,X) for a ∈ A and
X ∈ S. The language accepted by the finite state automaton is {a ∈ M(A) |
τ(a)S0 ∈ Sy}. A regular language over A is a subset of M(A) accepted by a
finite state automaton.
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Example 7.1.2 Here is an example of a finite state automaton F over the
alphabet A = {1, 2}. The S of F are the initial state S0, which is also an
accept state, the other accept states S1 and S2, and the reject state NO. The
map τ is given in Table 7.1.

Table 7.1. The transition function τ of the finite state automaton F . If a value
τ (a,X) is not listed, it is NO.

a X τ (a,X)
1 S0 S1

2 S0 S2

1 S2 S1

2 S1 S2

The language accepted by F is

{(12)n1, (21)n2, (12)n, (21)n | n ∈ N}.

A completely different approach uses regular expressions.

Definition 7.1.3 Let A be an alphabet and take a copy A : = {a | a ∈ A}.
A regular expression over A is an expression involving the letters from A,
the symbols ε and ∅ (not in A or A), and built up recursively by use of the
binary operators + and · (both written as infix, usually with the dot · itself
omitted) and the unary operator ∗ (written as an exponent).

The language of the regular expression x, notation, L(x), is the subset of
M(A) obtained from x by the following rules.

(i) L(∅) = ∅.
(ii) L(ε) = {ε}.
(iii) If a ∈ A, then L(a) = {a}.
(iv) If x and y are regular expressions, then L(x+ y) = L(x) ∪ L(y).
(v) If x and y are regular expressions,

L(xy) = L(x)L(y) := {ab | a ∈ L(x), b ∈ L(y)}.

(vi) If x is a regular expression, then

L(x∗) = L(x)∗ := {a1a2 · · ·an | n ∈ N, a1, . . . , an ∈ L(x)}.

Example 7.1.4 The regular language F of Example 7.1.2 is the language of
the regular expression

(12)∗(1 + ε) + (21)∗(2 + ε).

Observe that the regular expression for a given language is not unique.
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Theorem 7.1.5 Let A be a finite alphabet. A language over A is regular if
and only if it is the language of a regular expression over A.

For proving that a language is not a regular language, the following famous
lemma is very useful.

Lemma 7.1.6 (Pumping Lemma) Suppose that L is a regular language
over the finite alphabet A. Then there is a constant c ∈ N such that, if z ∈ L
has length l(z) ≥ c, there are u, v, w ∈ M(A) with l(uv) ≤ c, l(v) ≥ 1,
z = uvw and, for each i ∈ N, also uviw ∈ L.

Example 7.1.7 Consider the subset L = {1n | n is a prime} of M({1}).
Suppose it is regular. Let c be a constant as in the Pumping Lemma 7.1.6
for L. Take a prime p > c and consider z = 1p. By the lemma, there are
non-negative integers a, b ∈ N so that, with u = 1a, v = 1b and w = 1p−a−b,
we have a + b ≤ c, b ≥ 1, and 1b(i−1)+p = 1a1bi1p−a−b ∈ L for each i ∈ N.
This implies that the sequence p, p+ b, p+ 2b, . . . consists entirely of primes.
But p + pb has factors b + 1 and p, both of which are not equal to 1, a
contradiction. Hence L is not regular.

7.2 Minimal roots

The main result of this section is Theorem 7.2.9. Throughout the section, we
let (W,S) be a Coxeter system of finite rank n with root system Φ. When
describing the action of W on Φ, we will suppress the mapping ρ of Definition
3.3.1 in our notation, and write wα instead of ρ(w)α for α ∈ Φ and w ∈ W .
Similarly, for subsets X of Φ, we will write wX instead of ρ(w)X .

Definition 7.2.1 For α ∈ Φ+, the depth of α, notation dp(α), is the minimal
number k for which there is an element w ∈W of length k such that wα ∈ Φ−.
So the set ∆ = {e1, . . . , en} consists of all roots of depth 1.

Lemma 7.2.2 For α ∈ Φ+ and s ∈ S, we have

dp(sα) =





dp(α) − 1 if B(α, es) > 0
dp(α) if B(α, es) = 0
dp(α) + 1 if B(α, es) < 0

Proof. If B(α, es) = 0, then sα = α, so dp(sα) = dp(α).
Suppose B(α, es) > 0. Clearly, dp(sα) ≥ dp(α) − 1, so it suffices to show

dp(sα) ≤ dp(α) − 1. Take v ∈ W such that vα ∈ Φ− and l(v) = dp(α).
If ves ∈ Φ−, then take w = vs. By Proposition 4.1.2(iv), l(w) < l(v). As
vα ∈ Φ−, we have wsα ∈ Φ− and so dp(sα) ≤ l(w) < l(v) = dp(α), as
required.
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Assume, therefore, ves ∈ Φ+. Now vsα = vα − B(α, es)ves. Since both
vα and −ves are in Φ− and B(α, es) > 0, we have vsα ∈ Φ−. Notice that vα
and ves are not linearly dependent, for otherwise, α, being a scalar multiple
of es lying in Φ+, must be equal to es, contradicting vα ∈ Φ− and ves ∈ Φ+.
Since both vα and −B(α, es)ves are linear combinations of elements ∆ with
non-positive coefficients, it follows that vsα 6∈ −∆. Observe also that v 6= 1
as vα ∈ Φ−. Therefore, there is t ∈ S with l(tv) < l(v). Set w = tv. Now
wsα = tvsα ∈ Φ− as vsα ∈ Φ− is not a scalar multiple of et. This means
that dp(sα) ≤ l(w) = l(v) − 1 < dp(α), which establishes the case where
B(α, es) > 0.

Finally, suppose B(α, es) < 0. Then B(sα, es) = B(α, ses) = −B(α, es) >
0, so, by the previous case, dp(α) = dp(s(sα)) = dp(sα) − 1, and we are
done. tu

Definition 7.2.3 For α, β ∈ Φ+ we say that β preceeds α, notation β�α, if
there is an element w ∈W of length dp(α) − dp(β) such that α = wβ.

So, β preceeds α if it occurs in a chain of minimal length starting at α
and ending at a negative root whose steps are of the form γ, sγ for some
s ∈ S.

Lemma 7.2.4 The relation � is a partial order on Φ+.

Proof. [3] Suppose that α, β, γ ∈ Φ+ satisfy α�β and β�γ. Then there are
v, w ∈ W such that β = wα and γ = vβ with dp(β) − dp(α) = l(w) and
dp(γ) − dp(β) = l(v). In order to establish transitivity, we need that α�γ.
As dp(α)−dp(γ) = l(v)+ l(w) and vwα = γ, in order to conclude that α�γ,
it suffices to show l(vw) = l(v) + l(w).

Choose u ∈ W satisfying l(u) = dp(α) and uα ∈ Φ−. Then uw−1v−1γ =
uα ∈ Φ−, so l(uw−1v−1) ≥ dp(γ), which gives

l(uw−1v−1) ≤ l(u) + l(w) + l(v)

= dp(α) + dp(β) − dp(α) + dp(γ) − dp(β) = dp(γ)

≤ l(uw−1v−1).

It follows that l(uw−1v−1) = l(u)+l(w)+l(v). As l(uw−1v−1) = l(u(vw)−1) ≤
l(u)+ l((vw)−1) = l(u)+ l(vw), this implies l(v)+ l(w) ≤ l(vw). But, clearly,
l(vw) ≤ l(v) + l(w), so l(v) + l(w) = l(vw). Therefore, indeed α�γ, and � is
transitive.

If, in addition, γ = α, then dp(γ) = dp(α), so l(v) + l(w) = 0, so
v = w = 1 in W , and α = β. This shows that � is antisymmetric. Reflexivity
is obvious: α�α follows from the choice w = 1 in Definition 7.2.3. tu
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Definition 7.2.5 Let (W,S) be a Coxeter system with root system Φ. The
relation dom on Φ+ is defined by

α domβ if and only if {w ∈ W | α ∈ Φw} ⊆ {w ∈ W | β ∈ Φw}

for each α, β ∈ Φ+, A root α is called minimal if there are no β ∈ Φ+ with
β 6= α and α domβ.

By E we denote the set of all minimal elements of W .

If W is finite, then E = Φ+; see Exercise 7.4.6.

Proposition 7.2.6 For α, β ∈ Φ+ and s ∈ S the following assertions hold.

(i) If α domβ and w ∈W satisfies wβ ∈ Φ+, then wα domwβ.
(ii) α domβ if and only B(α, β) ≥ 2 and dp(α) ≥ dp(β).
(iii) If α is minimal and β�α, then β is minimal.
(iv) If α is minimal and sα ∈ Φ+\E, then sα domα.

Proof. (i). Assume α domβ and w ∈ W satisfies wβ ∈ Φ+. Then wα ∈ Φ+.
If v ∈W satisfies wα ∈ Φv , then, as α domβ, also wβ ∈ Φv, so wα domwβ.

(ii). As the statement is trivial in case α = β, we will assume α 6= β.

(ii) ⇒. Suppose α domβ. Take w ∈ W of length dp(α) such that wα ∈ Φ−.
write w = sv with s ∈ S and l(v) = l(w) − 1. Then vα ∈ Φs = {es},
so vα = es. As α domβ and wα ∈ Φ−, we have svβ = wβ ∈ Φ−. But
vβ 6= vα = es, so vβ ∈ Φ−, and dp(β) ≤ l(v) < l(w) = dp(α).

Suppose B(α, β) < 2. Then the restriction of B to Rα + Rβ is positive
definite and, by Proposition 5.3.2, 〈rα, rβ〉 is finite, contradicting α domβ by
Exercise 7.4.6.

(ii) ⇐. Suppose B(α, β) ≥ 2 and dp(α) ≥ dp(β). Choose w ∈ W of length
dp(β)−1 such that wβ ∈ ∆. Then wα ∈ Φ+, so dp(wα) ≥ dp(wβ). Moreover,
by (i), α domβ if and only if wα domwβ. Moreover, B(wα,wβ) = B(α, β) ≥
2. Therefore, it suffices to prove the assertion for the pair wα, wβ instead
of α, β. In other words, we may and shall assume β ∈ ∆. In particular,
rβα = α−B(α, β)β ∈ Φ+. Suppose now α domβ does not hold, that is, there
is x ∈ W with xα ∈ Φ− and xβ ∈ Φ+. Then xrβα = xα+B(α, β)(−xβ) ∈ Φ−

as B(α, β) ≥ 2 > 0. So α, rβα ∈ Φx and hence λα+µrβα ∈ Φx for any λ, µ ≥ 0
such that λα + µrβα ∈ Φ+. As B(α, rβα) = B(α, α) − B(α, β)2 ≤ −2, the
number of such roots in infinite; see Exercise 7.4.5. Therefore |Φx| is infinite,
a contradiction with Corollary 4.1.5.

(iii). It suffices to prove the case where dp(α) = dp(β)+1. So assume α = tβ
for some t ∈ S. By Lemma 7.2.2, B(β, et) < 0. Assume β 6∈ E, so there is
γ ∈ Φ+ with β 6= γ and β dom γ. Then, by (ii), B(β, γ) ≥ 2, so γ 6= et. This
implies tγ ∈ Φ+. By (i), α = tβ dom tγ, a contradiction with α ∈ E as α = tγ
contradicts β = γ.
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(iv). If sα 6∈ E, there is β ∈ Φ+ with sα domβ. If β = sα, there is nothing
to show, so assume this is not the case. Consequently, if w ∈ W is such that
α ∈ Φw, then, as (ws)(sα) ∈ Φ−, we also have (ws)β ∈ Φ−. If sβ ∈ Φ+, this
proves α dom sβ.

Suppose now α ∈ E. By the above, sβ ∈ Φ+ would imply α dom sβ,
and hence α = sβ, contradicting β 6= sα. Therefore, sβ ∈ Φ−. This means
β ∈ Φs = {es}, so β = es and sα domα. tu

Example 7.2.7 Let

M = Ã1 = ◦
1

◦
2

∞

Then Φ+ = {mα1 + (m + 1)α2, (m + 1)α1 + mα2 | m ∈ N}. Now (α1 +
2α2) domα2 by Proposition 7.2.6(ii) as dp(α1 + 2α2) = 2 > 1 = dp(α2) and
B(α1 + 2α2, α2) = −2 + 4 = 2. Similarly, (2α1 + α2) domα1. By Proposition
7.2.6(i), it readily follows that E = {α1, α2}.

The theorem below is a key to the construction of finite state automata
for Coxeter groups. Its proof needs the following lemma.

Lemma 7.2.8 Suppose α =
∑

s∈S λses and β =
∑

s∈S µses are positive
roots such that, for each s ∈ S, either λs = µs or B(α, es) = B(β, es). Then
B(α, β) = 2.

Proof. As α− β ∈ Z{es | λs 6= µs}, we have

B(α, α− β) =
∑

s∈S

(λs − µs)B(α, es) =
∑

s∈S

(λs − µs)B(β, es) = B(β, α − β).

This implies 2 − B(α, β) = B(β, α) − 2, and so B(α, β) = 2. tu

Theorem 7.2.9 The set E of minimal roots is finite.

Proof. We first argue that there is a finite number of values B(α, β) for
α, β ∈ Φ+ with B(α, β) in the interval (−2, 2). Indeed, by Lemma 5.1.6, for
such α and β the subgroup 〈rα, rβ〉 of W is finite and hence, by Theorem
6.3.4, a subgroup of a finite parabolic subgroup WJ for some J ⊆ S. In
particular, the orders rαrβ must divide the exponent of one of the finite
number of groups WJ for spherical J ⊆ S. Also, if rαrβ has order k, then
B(α, β) = 2 cos(πj/k) for some j ∈ [2k]. Hence there is a maximal number of
values, say d, that B(α, β) can take for for α, β ∈ Φ+ with B(α, β) ∈ (−2, 2).

Suppose now that the cardinality of E is infinite. Then there are roots in
E of arbitrarily large depth. In particular, there is βm ∈ Φ+ with dp(βm) = m
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for m = (d+ 1)n + 1. There exists a sequence β1 ≺ β2 ≺ · · · ≺ βm such that
dp(βi) = i and riβi−1 = βi for some ri ∈ S. By Proposition 7.2.6(iii), βi ∈ E
for each i ∈ [m].

If s ∈ S and B(βi, es) ≤ −2, then αi+1, the positive root of ri+1, is not
equal to es, for otherwise B(βi+1, es) ≥ 2, which would imply by Proposition
7.2.6(ii) that βi+1 dom es, a contradiction to βi+1 ∈ E (the roots βi+1 and es

are disctinct as they have distinct depths). Hence, by use of βi+1 = ri+1βi =
βi −B(βi, αi+1)αi+1, and B(βi, αi+1) < 0 (according to Lemma 7.2.2),

B(βi+1, es) = B(βi, es) −B(βi, αi+1)B(αi+1, es) ≤ −2.

By recursion, this shows B(βj , es) ≤ −2 and αj 6= es for all j > i. In
particular, the coefficient of es in βj is equal to the coefficient of es in βj−1 =
rjβj , and so remains fixed for j > i.

Now consider the sequence of vectors (B(βi, es))s∈S for i ∈ [m]. Each
of the n components of the vectors are in the open interval (−∞, 2) and
either take on one of the d possible values in (−2, 2) or lie below −2. As
m > (d + 1)n, there will be i, j ∈ [m] with i < j such that, for each
s ∈ S, either both B(βi, es) < −2 and B(βj , es) < −2 in which case
the coefficients of es in βi and βj are the same, or B(βi, es) = B(βj , es).
By Lemma 7.2.8, B(βi, βj) = 2, so, as dp(βj) = j > i = dp(βi), by
Proposition 7.2.6(ii), βj domβi, contradicting that both are in E. tu

7.3 Regular languages for Coxeter groups

Throughout the section, (W,S) is a Coxeter system of finite rank n with
root system Φ, positive roots Φ+ = Φ ∩ (R≥0e1 + · · · + R≥0en), and ∆ =
{e1, . . . , en}.

Theorem 7.3.1 Let (W,S) be a Coxeter system. Then the subset of all min-
imal expressions in M(S) for elements of W is a regular language over S.

Proof. Take subsets of E to be the accept states, so S = P(E)∪ {NO}, and
let τ be given by

τ(s,X) =

{
NO if es ∈ X or X = NO
(sX ∪ {es}) ∩ E if es 6∈ X

We claim

τ(r, ∅) =

{
NO if r is not a minimal expression
Φw−1 ∩ E if r is a minimal expression of w

The proof is by induction on the length, q say, of r. Let r = r1 · · · rq with
ri ∈ S. If q = 0, then r is a minimal expression of the identity element
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1 ∈ W and τ(r, ∅) = ∅ = Φ1, so the claim holds. Suppose q > 0 and write
r′ = r2 · · · rq , so r = r1r

′. If r′ is not a minimal expression, then neither
is r, and τ(r, ∅) = τ(r1, τ(r

′, ∅)) = τ(r1, NO) = NO, as required. Suppose,
therefore, that r′ is a minimal expression, so τ(r′, ∅) = Φw−1r1

∩ E by the
induction hypothesis.

If r is a minimal expression, then l(r1(r1w)) = 1 + l(r1w), and so, by
Exercise 4.4.5,

Φw−1 = Φ(r1w)−1r1
= Φr1

∪ r1Φ(r1w)−1 = {α1} ∪ r1Φ(r1w)−1 .

Let γ ∈ r1Φ(r1w)−1 ∩E. If r1γ 6∈ E, then by Proposition 7.2.6(v), r1γ domα1,
so, as r1γ ∈ Φ+ and (r1w)−1r1γ ∈ Φ−, also −w−1α1 = (r1w)−1α1 ∈ Φ−,
so w−1α1Φ

+, which is equivalent to l(r1w) > l(w) by Proposition 4.1.2(iv)
and the observation that the length of an element is equal to the length
of its inverse. But this contradicts, the assumption that r is minimal, so
r1γ ∈ E. This shows r1(r1Φ(r1w)−1 ∩ E) ⊆ E, and implies r1Φ(r1w)−1 ∩ E =
r1Φ(r1w)−1 ∩ r1E ∩ E = r1(Φ(r1w)−1 ∩E) ∩ E, so

Φw−1 ∩E = ({α1} ∪ r1Φ(r1w)−1) ∩ E = {α1} ∪ (r1Φ(r1w)−1 ∩ E)

= {α1} ∪ (r1(Φ(r1w)−1 ∩ E) ∩ E) = ({α1} ∪ r1(Φ(r1w)−1 ∩ E)) ∩ E
= ({α1} ∪ r1τ(r′, ∅)) ∩ E = τ(r1, τ(r

′, ∅))
= τ(r, ∅).

The one but last equality holds as l(w) > l(r1w), for this implies α1 6∈
Φ(r1w)−1 and hence α1 6∈ τ(r′, ∅). This settles the claim in case r is minimal.

If r is not minimal, then l(r1w) = 1 + l(w), so τ(r′, ∅) = Φ(r1w)−1 ∩ E =
Φw−1r1

∩E = Φw−1r1
∩E = ({α1} ∪ r1Φw−1) ∩E. As α1 ∈ E, it follows that

α1 ∈ τ(r′, ∅), so τ(r, ∅) = τ(r1, τ(r
′, ∅)) = NO.

This ends the proof of the theorem as the claim gives that the set of words
accepted by the automaton coincides with the set of minimal expressions
of elements from W . tu

The above shows that the Coxeter groups are very special from the point
of view of representative words. We will pursue this one more step by proving
that we can even obtain a regular language having a single representative
word for each element of W .

Definition 7.3.2 Let < be an ordering on S. Extend this ordering to the
ordering < on M(S) for which x < y if and only if l(x) < l(y) or l(x) = l(y)
and x is reverse lexicographically smaller than y, which means that there is
i ∈ [l(x)] such that x = x1 · · ·xq and y = y1 · · · yq with xj = yj for j > i and
xi < yi. This ordering is called the DegRevLex ordering on M(S).

For w ∈W , denote by µ(w) the unique element of δ−1(w) that is minimal
with respect to <.
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It may be convenient to reinterpret the identification of S and [n] in
such a way that the ordering on [n] is the natural one. More importantly,
the DegRevLex ordering has the following properties, which are essential for
what is often called a reduction ordering.

Lemma 7.3.3 Let < be a DegRevLex ordering on M(S), and let a, u, v ∈
M(S).

(i) If u < v, then aub < avb.
(ii) ε ≤ v.
(iii) The ordering < is Noetherian in the sense that every strict monotoni-

cally decreasing sequence is finite.

The (easy) proof is left to the reader. The following lemma will provide the
precise criterion why the automaton of Theorem 7.3.7 below will recognize
the image of µ in M(S).

Lemma 7.3.4 Let L = {µ(w) | w ∈ W}. Suppose w ∈ W and r ∈ M(S)
satisfy µ(w) = r and write r = r1 · · · rq ∈. Then the following assertions hold
for each s ∈ S.

(i) The expression sr of sw is minimal if and only if there exists no i ∈ [q]
such that es = r1r2 · · · ri−1αi, where αi is the positive root of ri.

(ii) Let sr be a minimal expression of sw. Then sr 6∈ L if and only if there
are i ∈ [q] and t ∈ S with t < ri such that µ(sr) = r1 · · · ritri+1 · · · rq ∈
L, in which case es = r1r2 · · · riet.

Proof. (i) is a recall of Theorem 4.2.2.

(ii). Suppose that sr is a minimal expression of sw and let µ(sw) = u =
u1 · · ·uq+1.

Then, as l(s(sw)) < l(sw), the exchange condition, Theorem 4.2.2, gives
that there exists i ∈ [q] such that, in W ,

su1 · · ·ui+1 = u1 · · ·ui. (7.1)

As u ∈ L and δ(sr) = sw = δ(u) , we have

u ≤ sr

Similarly, As r ∈ L and δ(r) = w = δ(su) = δ(u1 · · ·uiui+2 · · ·uq+1) , we
have

r ≤ u1u2 · · ·uiui+2 · · ·uq+1.

Comparing the two ordering relations, we find rj = uj+1 for j > i, so, by
Lemma 7.3.3(i),
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u1 · · ·ui+1 ≤ sr1 · · · ri
r1 · · · ri ≤ u1 · · ·ui.

Set t = ui+1. Multiplication of the second inequality by ui+1 · · ·uq+1 gives

r1 · · · ritri+1 · · · rq ≤ u in M(S).

But both sides represent the same element sw and u is minimal in δ−1(sw),
so r1 · · · ritri+1 · · · rq = u in M(S). This implies rj = uj for j ≤ i, and the
equality u1 · · ·ui+1 = sr1 · · · ri in W gives r1 · · · rit = sr1 · · · ri.

Suppose now sr 6∈ L. Then u < sr and so r1 · · · ritri+1 · · · rq < sr1 · · · rq
in M(S), whence r1 · · · rit < sr1 · · · ri in M(S), But t 6= ri as tri · · · rq is a
minimal expression, so we must have t < ri, as required. Also, rewriting the
equality gives s = r1 · · · ritri · · · r1 in W . As r1 · · · rit is a minimal expression,
Proposition 4.1.2(ii), (iv) implies es = r1 · · · riet.

Conversely, if t < ri and sr1 · · · ri = r1 · · · rit, then r1 · · · ritri+1 · · · rq <
sr ∈ δ−1(sw), and so sr 6∈ L. This proves the lemma. tu

Lemma 7.3.5 If Φu ∩ Φv−1 6= ∅, then l(uv) < l(u) + l(v).

Proof. Observe that Φuv ⊆ Φv∪v−1Φu. Suppose γ ∈ Φu∩Φv−1 . Then −v−1γ
belongs to Φv but not to Φuv . Hence Φv ∪ v−1Φu strictly contains Φuv , so, by
Corollary 4.1.5, l(uv) = |Φuv | < |Φv ∪ v−1Φu| ≤ l(v) + l(u), as required. tu

Lemma 7.3.6 Suppose β ∈ Φ+\E and u, v ∈ W satisfy uβ, v−1β ∈ ∆. Then

l(uv) < l(u) + l(v).

Proof. Let s, t ∈ S be such that uβ = es and v−1β = et. Then β ∈ Φsu ∩
Φtv−1. As β 6∈ E, there is γ ∈ Φ+ with γ 6= β and β dom γ. By the definition
of dominance, we find suγ, tv−1γ ∈ Φ−. As β 6= γ, also uγ 6= uβ = es.
Recall Φs = {es}, so uγ 6∈ Φs, and hence uγ ∈ Φ−. Similarly, v−1γ 6= et and
v−1γ ∈ Φ−. Now γ ∈ Φu ∩ Φv−1 , so, by Lemma 7.3.5, l(uv) < l(u) + l(v). tu

Theorem 7.3.7 Let (W,S) be a Coxeter system. For each DegRevLex or-
dering on M(S), the set {µ(w) | w ∈ W} is a regular language in M(S).

Proof. Let S be as before, that is, S = P(E) ∪ {NO}, but define τ by

τ(s,X) =





NO if X = NO
NO if es ∈ X
(sX ∪ {es} ∪ {sαt | t ∈ S and t < s}) ∩ E if es 6∈ X 6= NO

By L we denote the language {µ(w) | w ∈ W}. Consider the expression
r = r1 · · · rq for w. We need to show that r ∈ L if and only if r is accepted by
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the automaton. Clearly, the empty word and each symbol in S is accepted
by the automaton and belongs to L. So we may assume q > 1 and proceed
by induction on q. For each j ∈ [q], write ∆j = {es | s ∈ S and s < rj} and
Xj for the state of the automaton after reading rj . As usual, we write αj to
denote the positive root corresponding to rj .

Suppose that, for i ∈ [q − 1], the word ri+1 · · · rq is accepted by the au-
tomaton and riri+1 · · · rq is not. We will show riri+1 · · · rq 6∈ L. By induction
on q, we may assume i = 1, Then, for j > 1, we have αj 6∈ Xj+1 and

Xj = τ(rj , Xj+1) ⊆ rjXj+1 ∪ {αj} ∪ rj∆j ,

so, by recursion on j,

X2 ⊆ {r2 · · · rj−1αj | j = 2, . . . , q − 1} ∪
⋃

2≤j≤q

r2 · · · rj∆j .

Rejection implies α1 ∈ X2. If α1 = r2 · · · rj−1αj for some j > 1, then, by
Lemma 7.3.4(i), r1r2 · · · rj is not a minimal expression, contradicting that it
belongs to L. Hence α1 = r2 · · · rjes for some j > 1 and es ∈ ∆j . But then,
by Lemma 7.3.4(ii), r1r2 · · · rj 6∈ L, so r 6∈ L. This shows that all words of L
are accepted by the automaton.

Conversely, suppose that r 6∈ L, and choose i < q minimal such that
ri+1 · · · rq ∈ L. We need to show that r is not accepted by the automaton.
Again, by the induction hypothesis, we may assume i = 1. We claim that
α1 ∈ X2.

If the word r is not a minimal expression, then, by Lemma 7.3.4(i), α1 =
r2 · · · rj−1αj for some j > 1. Suppose now α1 6∈ X2. Choose k maximal
in [j] such that rk · · · r2α1 6∈ Xk and put β = rk · · · r2α1. As αj ∈ Xj by
construction, k < j. Now rk+1 · · · r2α1 ∈ Xk+1 by maximality of k. So β ∈
rkXk+1. But rkXk+1∩E ⊆ Xk and β 6∈ Xk, so β 6∈ E. Now, with the elements
u = r2 · · · rk and v = rk+1 · · · rj−1 of W , the roots uβ = α1 and v−1β = αj

are both in ∆, so Lemma 7.3.6 gives l(uv) 6= l(u)+ l(v) = j−2, contradicting
that r2 · · · rj−1 is a minimal expression. Hence α1 ∈ X2.

Therefore, we may assume that the word r is a minimal expression. As
r 6∈ L, Lemma 7.3.4(ii) gives j ∈ [q] and t ∈ S with t < rj such that
µ(r) = r2 · · · rj trj+1 · · · rq ∈ L and α1 = r2r3 · · · rjet. Recall α1 6∈ X2. Let
k ≤ j be maximal such that rk · · · rjet 6∈ Xk and put β = rk · · · rjet. Note
k ≥ 2. If k = j, then β = rjet 6∈ Xj , but rjet ∈ rj∆j and rj∆j ∩ E ⊆ Xj , so
β 6∈ E.

If k < j, then maximality forces rk+1 · · · rjet ∈ Xk+1 and, as rkXk+1∩E ⊆
Xk, again β 6∈ E. As before, setting u = r2 · · · rk−1 and v = rk · · · rj in W , we
find that uβ = r2 · · · rjet = α1 and v−1β = et are both in ∆, so Lemma 7.3.6
gives l(uv) < l(u) + l(v) = j − 2, contradicting that r2 · · · rj−1 is a minimal
expression. Hence α1 ∈ X2.

Thus, in all cases, α1 ∈ X2, and so τ(r1, X2) = NO. In other words,
the automaton does not accept r. This proves the theorem. tu
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Example 7.3.8 Let M = Ã1 and recall from Example 7.2.7 that E =
{α1, α2}. The automaton described in the proof of Theorem 7.3.7 for this
case coincides with the one of Example 7.1.2.

7.4 Exercises

Section 7.1

Exercise 7.4.1 Show that the language {(ab)i | i ∈ N} in M({a, b}) is reg-
ular.

Exercise 7.4.2 Show that the language {aibi | i ∈ N} in M({a, b}) is not
regular.

Exercise 7.4.3 Give a finite state automaton that accepts the language of
the regular expression (ab+ ba)∗ over {a, b}.

Section 7.2

Exercise 7.4.4 Let (W,R) be a Coxeter system. Prove that, for each α ∈
Φ+, we have dp(α) = 1

2 (l(rα) + 1).

Exercise 7.4.5 (Cited in Proposition 7.2.6(ii)) Let α, β be distinct positive
roots for the Coxeter system (W,S) such that B(α, β) ≤ −2. Show that, for
each n ∈ N,

(rαrβ)nα = λnα+ µnβ

with λn, µn ∈ R such that λn+1 ≥ µn + 1 and µn+1 ≥ λn + 1.

Exercise 7.4.6 (Cited in Proposition 7.2.6(ii)) Let α, β be distinct positive
roots of the Coxeter system (W,S). Prove that α domβ implies that the
subgroup 〈rα, rβ〉 of W has infinite order.

Exercise 7.4.7 Determine the set of minimal elements of the Coxeter group
of type Ã2 (given in Exercise 2.4.11).

Section 7.3

Exercise 7.4.8 Draw the finite state automaton of the proof of Theorem
7.3.7 for the case M = A2 in such a way that the states become nodes
and the transitions become labeled directed edges between the nodes. Give a
regular expression for the language accepted by this automaton.



7.5 Notes 115

Exercise 7.4.9 Draw the finite state automaton of the proof of Theorem
7.3.7 for the case M = Ã2 in such a way that the states become nodes
and the transitions become labeled directed edges between the nodes. Give a
regular expression for the language accepted by this automaton.

Exercise 7.4.10 Let (W,R) be a Coxeter system. We will use notions of
Definition 5.2.6. For each spherical subset J of S, we write wJ for the longest
element ofWJ . Denote by A the set of all these wJ and view it as an alphabet.
Consider the map ν : W → M(A) given by ν(1) = ε and ν(w) = wJν(wJw)
whenever w ∈ W\{1}. Describe the image of ν in M(A) and prove that it is
a regular language.

7.5 Notes

Section 7.1. There are many excellent introductions to automata theory. We
mention only [18].

Section 7.2 and Section 7.3. The material of these two sections is from
[3] and [19]. The paper [3] proves that Coxeter groups are automatic. This
implies the above results but actually means more, such as the existence, for
each generator s ∈ S, of a finite state automaton that, when given two words
a and b in a regular language for W as described in the text, will recognize
whether δ(b) is the product of s and δ(a).

The theory of automatic groups is best explained in [7].
The conjugacy for Coxeter groups has also been solved; see [23]. However,

it is still an open question whether all Coxeter groups are bi-automatic in
the sense of [7].
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8. Tits systems

The finite Chevalley groups, that is, the groups of Theorem 1.7.1(iii), (iv),
have in common that they all have a pair of subgroups with similar character-
istics; together with a little additional data, this is called a Tits system. Now
that we know more about Coxeter groups, we can make their significance for
these Chevalley groups clearer by means of Tits systems. The main result in
this direction is Theorem 8.1.2, which illustrates how Coxeter systems emerge
from Tits systems.

In the second and last section of this chapter, we look at geometry in Cox-
eter groups and in groups possessing a Tits system. We construct edge-colored
graphs on which the Coxeter groups act by automorphisms. These graphs,
called buildings, are of great significance for geometric characterizations of
Coxeter groups and Chevalley groups. We do not give these characterizations
for Chevalley groups, but restrict ourselves to a very simple thin version for
Coxeter groups. This is Theorem 8.2.6.

8.1 Tits systems

The Chevalley groups appearing in Theorem 1.7.1(iii), (iv) have the following
structure in common.

Definition 8.1.1 Let G be a group and let M be a Coxeter matrix. A Tits
system in G is a quadruple (B,N,W, S) for which the following four condi-
tions hold.

(i) B and N are subgroups of G generating the full group G.
(ii) H = B ∩N is a normal subgroup of N with quotient group W = N/H .
(iii) S is a generating set of W satisfying the following relations for any

w ∈ W , r ∈ S
BrBwB ⊆ BwB ∪ BrwB.

(iv) For each r ∈ S, we have rBr−1 6⊆ B.

Observe that, if w ∈ W has an expression s1 · · · sq with s1, . . . , sq ∈ S,
then s1 · · · sqH = Hs1 · · · sq is a well-defined coset of H in N , independent of
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the minimal expression for w. As H ⊆ B, expressions like Br and BrBwB
determine well defined unions of cosets of B in G.

To show how strong the conditions of Definition 8.1.1 are, we present a few
basic properties, the first of which establishes the connection with Coxeter
groups. For w ∈ W , we denote by l(w) the length of w with respect to S;
cf. Definition 2.1.7.

Theorem 8.1.2 Each Tits system (B,N,W, S) in a group G satisfies the
following properties for each r ∈ S, w ∈W , and J,K,L ⊆ S.

(i) The pair (W,S) is a Coxeter system.
(ii) l(rw) > l(w) if and only if BrBwB = BrwB.
(iii) BWJBWKB = BWJWKB.
(iv) GJ = BWJB is a subgroup of G. Moreover, GS = G and G∅ = B.
(v) If w1, w2 ∈ W satisfy w1 6= w2, then Bw1B 6= Bw2B.
(vi) GJ ∩ (GKGL) = (GJ ∩GK)(GJ ∩GL) = GJ∩KGJ∩L.

Proof. We first show that S consists of involutions in W . Let r ∈ S. Ap-
plying Definition 8.1.1(iii) with w = r−1 yields BrBr−1B ⊆ Br−1B ∪ B. So
BrBr−1B is the union of one or two double cosets with respect to B. In view
of Definition 8.1.1(iv) and B ⊆ BrBr−1B, this implies

BrBr−1B = Br−1B ∪ B. (8.1)

Inverting the sets at both sides of the equation, we find BrBr−1B = BrB∪B,
which, again by use of Definition 8.1.1(iv), together with (8.1) leads to

BrB = Br−1B. (8.2)

Applying Definition 8.1.1(iii) with w = r shows BrBrB ⊆ BrB ∪Br2B. On
the other hand, (8.1) and (8.2) give

BrBrB = BrBr−1B = BrB ∪B. (8.3)

Therefore, B = Br2B, i.e., r2H ⊆ B. Since r2H ⊆ N , by definition, we
derive from Definition 8.1.1(ii) that r2H = H , so r2 = 1 ∈ W . As r = 1
would contradict Definition 8.1.1(iv), it follows that r is an involution of W .
Taking inverses in Definition 8.1.1(iii)) we find

wBr ⊆ BwB ∪ BwrB for all r ∈ S and w ∈W. (8.4)

(iii). Obviously,BWJBWKB ⊇ BWJWKB. We next showBWJBWJWKB ⊆
BWJWKB. To this end, we let g ∈ BWJBWJWKB. Then there are
r1, . . . , rq ∈ J such that g ∈ Br1 · · · rqBWJWKB. If q = 0, then g ∈
BWJWKB and there is nothing to prove. Otherwise, we have
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Br1 · · · rqBWJWKB ⊆ Br1 · · · rq−1BrqBWJWKB

⊆ Br1 · · · rq−1BWJWKB

by Definition 8.1.1(iii), whence g ∈ Br1 · · · rq−1BWJWKB. By induction on
q, it follows that BWJBWJWKB ⊆ BWJWKB. But then BWJBWKB ⊆
BWJBWJWKB ⊆ BWJWKB, and (iii) is proved.

(iv). Now GJ is clearly non-empty and closed under taking inverses. From
what we have just seen, GJ is also closed under multiplication, so it is a
subgroup. Finally, due to Definition 8.1.1(i), G∅ = B1B = B, and GS =
BSB = BNB = 〈B,N〉 = G, whence (iv).

(v). Suppose w1, w2 ∈ W with w1 6= w2. Without harming generality, we
may assume l(w1) ≤ l(w2). If l(w2) = 0, then Bw1B = Bw2B would imply
w1H ⊆ B ∩ N = H , whence w1H = H = w2H , a contradiction. Thus
Bw1B 6= Bw2B and we are done. Let l(w2) ≤ 1. Then there is an involution
r ∈ S such that l(rw2) < l(w2). By induction on l(w2) we have Brw2B 6=
Bw1B,Brw1B, so Brw2B ∩ BrBw1B = ∅. Now Bw1B = Bw2B would
imply Brw2B∩BrBw2B = ∅, which is absurd as Brw2B is contained in this
intersection. Hence Bw1B 6= Bw2B, establishing (v).

(i) and (ii). For r ∈ S, set Cr = {w ∈ W | BrBwB = BrwB}. We first prove
two claims on these Cr.

Cr ∩ rCr = ∅. (8.5)

Suppose w ∈ Cr. Then BrBrwB = BrBrBwB = BwB∪BrwB, so rw 6∈ Cr,
leading to w 6∈ rCr , and settling (8.5).

If w ∈ Cr and s ∈ S with ws 6∈ Cr, then rw = ws. (8.6)

For,

BwB ⊆ BwsBsB

⊆ BrBwsBsB (as ws 6∈ Cr)

⊆ BrBwBsBsB = BrwBsBsB (as w ∈ Cr)

= BrwB ∪ BrwBsB (by (8.3))

= BrwB ∪ BrwsB (by (8.4))

so w ∈ {rw, rws} by (v). But w = rw conflicts r 6= 1, so w = rws. This
yields rw = ws as required.

Now we verify the Exchange Condition (cf. Definition 4.2.1) and at the same
time establish that w ∈ Cr is equivalent to l(rw) > l(w). Let w ∈ W . Suppose
w 6∈ Cr. Let r1 · · · rq ∈ M(S) be a minimal expression of w as a product of
elements from S. Write wj = r1 · · · rj for j = 0, 1, . . . , q. Since w0 = 1 ∈ Cr

and wq = w 6∈ Cr , there is an element j ∈ {0, 1, . . . , q− 1} such that wj ∈ Cr

and wjrj+1 = wj+1 6∈ Cr. Applying (8.6), we obtain rwj = wjrj+1 = wj+1.
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This means rr1 · · · rj−1 = r1 · · · rj , and implies l(rw) < l(w). Next, suppose
w ∈ Cr. Then by (8.5), rw 6∈ Cr, so by what we have just seen l(w) =
l(r(rw)) < l(rw). Consequently, w ∈ Cr if and only if l(rw) < l(w), and the
Exchange Condition holds. By Theorem 4.2.2, this ends the proof of (i) and
(ii).

(vi). Recall WJ ∩WKWL = (WJ ∩WK)(WJ ∩WL) from Proposition 4.2.8(ii).
Hence,

GJ ∩ (GKGL) = (BWJB) ∩ (BWKBWLB)

= BWJB ∩ BWKWLB (by (iii))

= B(WJ ∩WKWL)B (by (v))

= B(WJ ∩WK)(WJ ∩WL)B (by (i))

= B(WJ ∩WK)BB(WJ ∩WL)B (by (iii))

= ((BWJB) ∩ (BWKB))((BWJB) ∩ (BWLB)) (by (iv))

= (GJ ∩GK)(GJ ∩GL).

But also

GJ ∩GK = BWJB ∩ BWKB

= B(WJ ∩WK)B (by (iv))

= BWJ∩KB (by Corollary 4.2.6(iii))

= GJ∩K

and similarly GJ ∩ GL = GJ∩L. This ends the proof of (vi) and hence
the theorem. tu

In view of Theorem 8.1.2(i), the pair (W,S) is a Coxeter system and so
has a Coxeter type M .

Definition 8.1.3 If (B,N,W, S) is a Tits system in a group G, then its
Coxeter type and rank are the Coxeter type and rank of the Coxeter system
(W,S).

Example 8.1.4 Let G be a group with a Tits system (B,N,W, S) of rank 1.
Then |S| = 1 and W ∼= W (A1) is the cyclic group of order 2. Write S = {r}.
By Theorem 8.1.2, G = B ∪ BrB, so G acts doubly transitively on G/B by
left multiplication. The subgroup B of G is the stabilizer of the point B in
this permutation representation and r corresponds to an element of G having
an orbit of length 2 on B.

Conversely, suppose G acts doubly transitively on a set X of size at least
3. Take two distinct points x, y ∈ X and set B = Gx. Choose an element
n ∈ G moving the pair (x, y) to the pair (y, x) of elements from X . Then
G = B ∪ BnB and n2 ∈ B. Define N as the subgroup of G generated by n
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and set H = B ∩N . Now G, being generated by B and n, is also generated
by B and N , so (i) of Definition 8.1.1 is satisfied. As H has index 2 in N , it
is a normal subgroup of N . We also find that N/H is a cyclic group of order
2, with generator s = nH . We have verified (ii) of Definition 8.1.1. Condition
(iii) of Definition 8.1.1 needs to be checked only for r = s and w ∈ {1, s}. It
is trivial for w = 1 and follows from G = BsB ∪ Bs2B in case w = s. Now,
as X has size at least 3, there is an element b ∈ B mapping y to an element
z 6= y. Then nbn−1x = nby = nz 6= ny = x, showing that nbn−1 ∈ sBs−1\B.
Hence (iv) of Definition 8.1.1.

The conclusion is that a Tits system of rank 1 is equivalent to a doubly
transitive permutation group on a set of size at least 3.

Definition 8.1.5 A Tits system is called split if there is a normal subgroup
U of B such that B is the semidirect product of U and H .

Example 8.1.6 In SL(2,F) consider the elements

uλ =

(
1 λ
0 1

)
, n =

(
0 ζ

−ζ−1 0

)
, hζ =

(
ζ 0
0 ζ−1

)
.

Put U = {uλ | λ ∈ F}, H = {hζ | ζ ∈ F∗}, B = UH and N = H ∪ nH .
Then B is the subgroup of SL(2,F) of all upper triangular matrices, U is the
normal subgroup of B consisting of all upper triangular matrices with ones
on the main diagonal and B is the semidirect product of U and H . Moreover,
every element of SL(2,F) can be written in the form uλhζ or uλn1hζuµ for
certain λ, µ ∈ F and ζ ∈ F\{0}, so SL(2,F) = B ∪ Un1B = B ∪ BsB,
where s = n1H . Also, H has index 2 in N , and so W = N/H is cyclic,
with generator s. As B is the stabilizer of the projective point corresponding
to the first standard basis vector, the SL(2,F)-set SL(2,F)/B coincides with
the projective line over F and so has cardinality |F| + 1, at least three. The
SL(2,F)-action on SL(2,F)/B is doubly transitive, as follows from the fact
that SL(2,F) has exactly two double cosets with respect to B. (It is the action
on the projective line over F.) Therefore, (B,N,W, {s}) is a split Tits system
of rank 1.

By expandingH to all invertible diagonal matrices of size 2, we can extend
the above to a Tits system for GL(2,F).

Example 8.1.7 The group G = GL(n + 1,F) has a split Tits system
(B,N,W, S) with B the subgroup of upper triangular matrices, N the group
of monomial matrices (that is, with a single nonzero entry in each row and
in each column). Then H = B ∩ N is the group of diagonal matrices of
GL(n+ 1,F). It is normal in N with quotient group W = N/H ∼= Symn+1 =
W (An). For π a permutation on n+1 letters, denote by Mπ the permutation
matrix of size n + 1 corresponding to π, so Mπej = eπj , where e1, . . . , en+1
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is the standard basis of Fn+1. Then S = {M(i,i+1)H | i ∈ [n]} is the set of
fundamental reflections of W , viewed as a Coxeter group of type An. Then
(B,N,W, S) is a Tits system in G. The subgroup U of all upper triangular
matrices with ones on the diagonal is normal in B and B = U o H , so the
Tits system is split.

For i ∈ [n], the set G{i} = B ∪ BM(i,i+1)B is a subgroup of G, of the
form Ui o(SL(2,F) ·H), where Ui is the subgroup of U of all upper triangular
matrices with ones on the diagonal whose (i, i+ 1)-entry is zero. This can be
seen by use of Example 8.1.6 and helps to prove that (B,N,W, S) is a Tits
system (proving this is Exercise 8.3.2).

Identify, as usual, [n] with S via i 7→ M(i,i+1)H and let ε1, . . . , εn+1 be
the standard basis of Rn+1. For J ⊆ S, the subgroup GJ of G consists of
all matrices of size n + 1 whose entries (i, j) are zero whenever i > j and
εj − εi 6∈

∑
k∈J R≥0(εk − εk+1). In geometric terms, GS\{j} is the stabilizer

in G of the linear subspace 〈ei | i ≤ j〉 of Fn+1.

Most of the Tits systems encountered in Chevalley groups are split.

Theorem 8.1.8 (Tits systems of Chevalley groups) Each finite simple
Chevalley group has a Tits system as indicated in Table 8.1.

Table 8.1. Types M of Tits systems in the Chevalley groups of Theorem 1.7.1.

group condition M
SL(n, q) n ≥ 3 and (n, q) 6= (2, 2), (2, 3) An−1

O(2n + 1, q) n ≥ 2 Bn

Sp(2n, q) n ≥ 3 Cn

O+(2n, q) n ≥ 4 Dn

En(q) n = 6, 7, 8 En

F4(q) F4

G2(q) G2
2An−1(q) = U(n, q) n ≥ 4 Bbn/2c

2B2(2
2m+1) m ≥ 1 A1

2Dn(q) = O−(2n, q) n ≥ 4 Bn−1
3D4(q) G2
2E6(q) F4

2F4(2
2m+1) m ≥ 0 I

(8)
2

2G2(3
2m+1) m ≥ 1 A1

8.2 A combinatorial characterization of Coxeter groups

A Tits system in a group G gives rise to a geometry on which G acts as
a group of automorphisms. This geometry is called a building and will be
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presented here as an edge-colored graph. Let (W,S) be a Coxeter system.
Observe that the quadruple ({1},W,W, S) satisfies the first three conditions
of a Tits system, but not the fourth. This phenomenon will recur in the guise
of thin buildings below, as opposed to the thick buildings coming from Tits
systems. According to Exercise 8.3.4, these thin buildings appear abundantly
in those thick buildings.

In Corollary 3.3.6, we have seen that the subgroups of W of the form WJ

for J ⊆ S are Coxeter groups themselves. Here we study the permutation
representation of W on the collection of cosets W/WJ . In fact, we construct
edge-colored graphs onW/WJ on whichW acts as a group of automorphisms.
We pay most attention to the case where J = ∅, in which case the graphs are
called buildings.

Definition 8.2.1 For J ⊆ S, the Coxeter graph of (W,S) on J is the edge-
colored graph Γ whose vertex set is W/WJ , whose color set is S\J and in
which two distinct cosets gWJ and hWJ , for g, h ∈ W , are r-adjacent (for
r ∈ S\J) if and only if g−1h ∈ WJrWJ , notation gWJ ∼r hWJ . If J = ∅,
then Γ is also called the chamber system of (W,S).

Since WJrWJ = WJr
−1WJ , the relations ∼r are symmetric, so Γ is an

undirected graph.

Lemma 8.2.2 The action of the group W by left multiplication on the Cox-
eter graph Γ preserves each of the relations ∼r. In particular, W acts on Γ
as a group of automorphisms.

Proof. Let w ∈W . If gWJ ∼r hWJ , then g−1h ∈ WJrWJ , so (wg)−1(wh) ∈
WJrWJ , proving wgWJ ∼r whWJ . Hence left multiplication by w is an
automorphism of Γ . tu

Example 8.2.3 Let (W,S) be of type An−1, so W ∼= Symn. Take k ∈ [n−1]
and set J = [n − 1]\{k}. Then there is just one color, k, and so Γ is an
ordinary graph. Now WJ = W[k−1]×W{k+1,...,n−1}, so |WJ | = k! ·(n−k)! and

|W/WJ | =
(
n
k

)
. This suggest a correspondence between Γ and the collection

of k-subsets of [n].

Denote by ∂ the graph-theoretic distance function W ×W → N on the
chamber system Γ of (W,S). Thus, ∂(x, y) = l(y−1x) for x, y ∈ W . For
J ⊆ S, write ∼J to denote

⋃
j∈J ∼j . A connected component of ∼J in Γ is

called a J-cell . The J-cell containing x is the subset xWJ of W . The chamber
system Γ has the following combinatorial properties.

Proposition 8.2.4 Let (W,S) be a Coxeter system of type M and denote
by Γ its chamber system. Then the following statements hold.
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(i) Γ is connected.
(ii) For i, j ∈ S with i 6= j, the graph structure induced on each {i, j}-cell

by the relations i and j is a 2mij-gon.
(iii) For each J-cell of Γ and each x,w ∈ W , there is a unique chamber

y in the J-cell D containing x such that, for each z ∈ D, we have
∂(w, z) = ∂(w, y)+∂J(y, z), where ∂J represents the distance between x
and y measured in the graph on D with adjacencies coming solely from
J .

Proof. (i). The S-cell containing 1 is WS = W . This proves that Γ is con-
nected.

(ii). The {i, j}-cell containing x is xW{i,j}. Each vertex is on precisely one
edge of each color from {i, j}, and paths of length 2mij with alternating
colors along the edges are closed. Hence the graph with edges from the colors
i and j is a single cycle of length 2mij .

(iii). For u ∈ D = xWJ and w as stated, we have ∂(w, u) = l(w−1u). Take
y′ ∈ W J∩w−1xWJ (see Definition 2.2.2) and write y = wy′. If z ∈ xWJ , then
z = yv for some v ∈ WJ with l(z) = l(y) + l(v), so, by Corollary 4.2.6 and
Lemma 2.2.3, ∂(z, y) + ∂J (y, w) = l(v) + lJ(y′) = l(y′v) = l(w−1z) = ∂(z, w)
as required. tu

Definition 8.2.5 Let C be a set and S a collection of distinct equivalence
relations on C. If M is a Coxeter diagram whose nodes are indexed by S, then
(C, S) is called a thin chamber system of type M if properties (i) and (ii) of
Proposition 8.2.4 are satisfied and each equivalence class has size two. Here,
for J ⊆ S, the J-cell of an element c of C is the connected component of
the graph containing c whose adjacencies are the relations in J ; the chamber
system is called connected if there is a single S-cell in C. The members of C
are called chambers .

If C is a thin chamber system of type M , then it is called a building if (iii)
of Proposition 8.2.4 (the gate property) holds, where ∂ is the graph-theoretic
distance in Γ (with adjacency x ∼ y if and only if x and y are distinct and
x and y are s-equivalent for some s ∈ S).

Proposition 8.2.4 has the following converse.

Theorem 8.2.6 Let M be a finite Coxeter diagram and Γ be a thin building
of type M . Then Γ is the chamber system of a Coxeter system of type M .

Proof. Write n for the size of M and put S = [n]. Denote by C the set of
chambers of Γ .

As Γ is thin, for each i ∈ [n] and chamber c ∈ C, there is a unique
chamber, denoted ci, in C, that is i-adjacent to c and distinct from c. So
there are permutations pi of C (for i ∈ [n]) such that pi(c) = ci. Observe



8.2 A combinatorial characterization of Coxeter groups 125

that the subgroup 〈p1, . . . , pn〉 of Sym(C) is a quotient of the Coxeter group
of type M . This follows easily because the pi satisfy the defining relations:
p2

i (c) = (ci)i = c for every chamber c, and the braid relations pipjpi · · · =
pjpipj · · · are satisfied due to the condition that the {i, j}-cells are 2mij-
gons. As a consequence, the map S → {pi | i ∈ [n]} given by si 7→ pi

extends to a homomorphism φ : W (M) → Sym(C). Note that, for w ∈W =
W (M), the element ew = φ(w−1)e is well defined and can be computed as
psq

psq−1
· · · ps1

e for any expression s1s2 · · · sq of w. If w ∈ W and d, e ∈ C
are such that φ(w)e = d, then w corresponds to a path from e to d of length
l(w).

We show that the homomorphism φ is injective. In fact, we even show
that the W -action on C is regular, that is, for each c ∈ C and w ∈ W we
only have φ(w)c = c if w = 1.

Suppose not. Then there is an element w ∈ W of length q > 0 and a
chamber e ∈ C with φ(w)e = e. Let q be minimal with this property. Take
a minimal expression s1 · · · sq ∈ M(S) for w. Consider the closed path e,
e1 = φ(s1)e = es1, e2 = e1s2, . . . , eq = eq−1sq = e in Γ . Thus, ej ∼sj

ej−1

for each j ∈ [q], where eq = e0 = e.
Clearly, q > 1. If q = 2h + 1, then {eh, eh+1} is an {sh+1}-cell and the

paths e, e1, . . . , eh and e = eq, eq−1 . . . , eh+1 have both length h, so, by the
gate property, one of the two chambers eh and eh+1, say eh, has distance less
than h to e in Γ . Suppose this distance is realized by v ∈W of length l(v) < h,
so eh = φ(v)e with v ∈W of length less than h. By the minimal choice of q,
we then have s1 · · · shv = 1 ∈ W , so v−1sh+1 · · · sq is of length less than q and
corresponds to a closed path in Γ starting at e. Again by the minimal choice
of q, we derive v−1sh+1 · · · sq = 1, so w = (s1 · · · sh)(sh+1 · · · sq) = v−1v = 1,
a contradiction.

Suppose, therefore q = 2h. Then the {sh+1, sh}-cell D containing eh also
contains eh−1 and eh+1. Both these chambers have a path of length h− 1 to
e. By the gate property there is a chamber d in D of distance less than h− 1
to e. First of all, by the gate property applied to d, all distances within D
along the {i, j}-adjacencies, are the distances within Γ . For, d itself must be
the unique member f of D such that ∂(d, y) = ∂(d, f) + ∂{i,j}(f, y) for all
y ∈ D (take y = d to see this).

Now the closed path starting at e, along the original closed path to eh−1,
next to d in D and then back to e along a path of minimal length has length
smaller than q and so the corresponding element of w represents the identity
in W . Also the closed path starting at e, along the original closed path to
eh+1, then to d in D, and finally back to e along a path of minimal length, has
length smaller than q and so represents the identity in W . As a consequence,
the closed path from eh−1 to eh+1 via eh and then back to eh−1 via d is in D
and can be chosen fully with {i, j}-adjacencies. As d 6= eh (in view of distinct
distances to e), the chamber d must be the opposite of eh inside D, so the
paths of minimal length from d to eh via eh−1 and via eh+1 represent the
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same (longest) element of W{i, j}. But now the closed path we started with
is a product of three paths corresponding to the trivial element of W and so
must correspond to the trivial element of W itself, the final contradiction. tu

Now that we have seen that a thin building of type M comes from the
regular representation of a Coxeter system of type M , we focus on similar
structures in a thick setting. This means that the equivalence classes have
size at least three.

Definition 8.2.7 Let C be a set and S a collection of distinct equivalence
relations on C. For s ∈ S, we will say that x and y are s-adjacent, and write
x ∼s y, if they are s-equivalent and not equal.

As before, for J ⊆ S, the J-cell of an element c of C is the connected
component of the graph containing c in which adjacency is the union of all
∼j for j ∈ J ; the chamber system is called connected if there is a single S-cell
in C. The members of C are called chambers .

If |S| = 2, and m ∈ N, m ≥ 2, then (C, S) is called a generalized m-gon
if the following two properties are satisfied.

(i) The graph on C with adjacencies ∼S is bipartite and connected.
(ii) For each g < 2m there are no 2g-gons in C.
(iii) The diameter of C is precisely m.

If M is a Coxeter diagram whose nodes are indexed by S, then (C, S)
is called a chamber system of type M if the following three properties are
satisfied

(i) C is connected.
(ii) For each pair i, j ∈ S, the ∼{i,j}-graph on each {i, j} cell in C is a

generalized mij-gon.
(iii) For each J-cell of Γ and each x,w ∈ C, there is a unique y in the

J-cell D containing x such that, for each z in D, we have ∂(z, w) =
∂(z, y) + ∂J (y, x), where ∂J represents the distance between x and y
measured in the graph on D with adjacencies coming solely from J .

Finally, (C, S) is called thick, if, for each s ∈ S, each {s}-cell has size at least
three.

Example 8.2.8 Consider a projective plane with lines of size at least 3 and
at least 3 lines per point. Let C be the set of all pairs consisting of a point
and a line incident to the point in that plane. Define the equivalence relation
p by letting c and d be p-equivalent if and only if c and d have the same point
and the equivalence relation l by letting c and d be l-adjacent if and only if
c and d have the same line. Then (C, {p, l}) is a thick generalized 3-gon.

Lemma 8.2.9 Let (B,N,W, S) be a Tits system in G. Then s1 · · · sq ∈ M(S)
is a minimal expression of w ∈W if and only if BwB = Bs1Bs2B · · ·BsqB.
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Proof. If s1 · · · sq ∈ M(S) is a minimal expression of w ∈ W , then,
by induction on q and application of Theorem 8.1.2(ii), we find BwB =
Bs1Bs2B · · ·BsqB.

Conversely, suppose w ∈ W and s1, . . . , sq ∈ S satisfy

BwB = Bs1Bs2B · · ·BsqB.

By Theorem 8.1.2(v), w = s1 · · · sq , so it remains to verify q = l(w). If q = 0,
there is nothing to show, so we proceed by induction on q. Let q > 0 and
choose j ∈ [q] minimal such that sjsj+1 · · · sq ∈ M(S) is a minimal expression.
Assume j > 1. Now, by Theorem 8.1.2(ii),

BwB = Bs1Bs2B · · ·BsqB

= Bs1B · · ·Bsj−1Bsj · · · sqB

= Bs1B · · ·Bsj−2Bsj−1sj · · · sqB ∪ Bs1B · · ·Bsj−2Bsj · · · sqB

⊇ BwB ∪ Bs1 · · · sj−2sj · · · sqB ⊇ Bs1 · · · sj−2sj · · · sqB,

so, by Theorem 8.1.2(v), w = s1 · · · sj−1sj · · · sq , a contradiction with the
parity of l(w). Hence j = 1 and s1 · · · sq is a minimal expression of w, as
required. tu

Definition 8.2.10 Let G be a group with a Tits system (B,N,W, S) of
type M . Let Γ be the pair consisting of the set G/B and the equivalence
relations s for s ∈ S according to which gB and hB are s-equivalent if and
only if g−1h ∈ G{s}. Then Γ is called the chamber system of the Tits system
(B,N,W, S).

Lemma 8.2.11 Let (B,N,W, S) be a Tits system in a group G of rank 2.
Then the corresponding chamber system is a thick generalized mij-gon.

Proof. This is direct from Lemma 8.2.9. tu

Proposition 8.2.12 Let (B,N,W, S) be a Tits system of type M in a group
G. Then the corresponding chamber system Γ is a thick building and G acts
on Γ as a group of automorphisms.

Proof. The proof runs along the same lines of argument as Proposition 8.2.4.

(i). In view of Definition 8.1.1(iii), the S-cell containing B consists of all
cosets of B in

⋃
w∈W BwB for w ∈ W . By Theorem 8.1.2(iv), this union

coincides with G. Therefore, every chamber is connected to B.

(ii). The {i, j}-cell containing gB is set of all B-cosets in gG{i,j}. The result
now follows easily from Lemma 8.2.9.

(iii). By Lemmas 8.2.9 and 2.2.3. tu
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The thick building obtained as in Proposition 8.2.12 has many thin build-
ings of the same Coxeter type as substructures; see Exercise 8.3.4. In par-
ticular, the study of the mutual positions of any two chambers in the thick
building can be reduced to a study in the thin building underlying the cor-
responding Coxeter group.

8.3 Exercises

Section 8.1

Exercise 8.3.1 For n ≥ 4, the alternating group Altn is doubly transitive
on [n]. For which n does this permutation representation give rise to a Tits
sytem of rank 1? For which n does it give rise to a split Tits system?

Exercise 8.3.2 (Cited in Example 8.1.7) Show that (B,N,W, S) of Example
8.1.7 is a Tits system.

Section 8.2

Exercise 8.3.3 Note that the permutations pi (i ∈ [n]) of the proof of The-
orem 8.2.6 are not automorphisms of the chamber system Γ . Nevertheless Γ
has a group of automorphisms isomorphic to W . Find this group and prove
that it is indeed a Coxeter group.

Exercise 8.3.4 Let (B,N,W, S) be a Tits system of type M in a group G.
Show that the set A = NB/B, together with the relations on A induced from
S, is a thin building of type M . Conclude, by use of translations by elements
of G, that each pair of chambers of the building of the Tits system lies in a
copy gA of A for some g ∈ G.

Exercise 8.3.5 Consider the permutations a = (1, 2)(3, 4), b = (1, 2)(4, 5),
and c = (1, 3)(2, 4) in G = Alt5.

(a) Prove that there is a surjective homomorphism of groups W (H3) → Alt5
determined by s1 7→ a, s2 7→ b, and s3 7→ c, where S = {s1, s2, s3} is the
fundamental generating set of W (H3).

(b) For s ∈ S, let s-adjacency ∼s on Alt5 be given by u ∼s v if and only if
u = vs. Prove that the edge-colored graph on Alt5 arising in this way is a
thin chamber system of type H3 that does not satisfy the gate property.
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8.4 Notes

Section 8.1. The theory of Tits systems is developed in [38]. See [41, 32, 5]
for excellent introductions to the theory and the geometric highlights. A self-
contained classification of split Tits systems of spherical type and rank at
least 2 as well as a classification of arbitrary Tits systems of spherical type
and rank at least 3 is given in [39].

Section 8.2. The classification of thick buildings of spherical type is dealt
with in [38]. A consequence of the result is that they all come from groups with
a Tits system if the rank is at least 3. Many but not all come from algebraic
groups. The exceptions are due to slight deviations from the algebraic groups
case. For instance, the groups GL(n, D ), for D a noncommutative division
ring, have a Tits system but are not algebraic. A very thorough treatment
will appear in a new book by Weiss on buildings on affine type, one of the
many topics not dealt with in these notes.

As for rank 2, for m = 3, 4 wild examples of finite thick buildings of type

I
(m)
2 are known, but for m = 6, 8 none other than the examples coming from

finite Chevalley groups are known. These are the only values of m greater

than 2 for which finite thick buildings of type I
(m)
2 exist. See [28, 4, 40] for

more details.
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Glossary

abelian: A group G is abelian if gh = hg for all g, h ∈ G.

absolutely irreducible: A representation of a group G on a vector space
V over a field F is called absolutely irreducible if the representation of G
induced on V ⊗ F, where F is the algebraic closure of F, is irreducible.

algebra: An algebra over a field F is a vector space A over F together
with an associative bilinear map A×A→ A; (a, b) 7→ a · b, referred to as the
multiplication on A, such that, for all a, b ∈ A and λ ∈ F,

λ(ab) = (λa) · b = a · (λb).

Cayley graph: Let G be a group, and let S be a subset of the group ele-
ments not containing the identity element. The Cayley graph corresponding
to the pair (G,S) is the directed graph whose vertices are the elements of G.
Two vertices g, h ∈ G are connected by an edge (g, h) whenever gh−1 ∈ S.

centralizer: Let S be a subset of a group G, then the subgroup CG(S) =
{g ∈ G | gsg−1 = s for all s ∈ S} of G is the centralizer of S in G.

center: Let G be a group. The center of G is formed by the elements
g ∈ G which satisfy ghg−1 = h for all h ∈ G.

conjugate: A subset X of a group G is conjugate to another subset Y if
there is g ∈ G such that gXg−1 = Y .

coset: A coset of a subgroup H of a group G is a subset of the form gH
for some g ∈ G, which is defined as {gh | h ∈ H}. Often, this is also called a
left coset. Less frequently, it is called a right coset, a notion we preserve for
sets of the form Hg.

discrete: A subset of Rn, supplied with the standard inner product, is
discrete in Rn if there is a real positive number µ such that any two elements
of the subset are at Euclidean distance at least µ.
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double coset: A double coset corresponding to two subgroups H and K
of a group G is a subset of the form HgK for some g ∈ G, which is defined
as {hgk | h ∈ H ∧ k ∈ K}.

doubly transitive: The group action of a group G on a set X is called
doubly transitive, if for every four points x1, x2, y1, y2 ∈ X , there is a group
element g ∈ G such that gxi = yi for i = 1, 2.

embedding: An embedding of a group G in a group H is an injective
group homomorphism from G to H .

Euclidean distance: Given two vectors v, w ∈ Rn, supplied with the
standard inner product, the Euclidean distance between them is

√
(v − w, v − w).

Euclidean length: Given a vector v ∈ Rn, supplied with the standard
inner product, its Euclidean length is

√
(v, v), that is the Euclidean distance

between v and 0.

First Isomorphism Theorem: If φ : G → H is a homomorphism of
groups, then Imφ is a group isomorphic to G/Kerφ and φ = φ ◦ π, where
π : G→ G/Kerφ is the natural quotient map and φ is a uniquely determined
homomorphism G/Kerφ → H .

free module: A module is called free if it has a spanning set of linearly
independent elements. So, if M is a module over R, then M is free (over R)
if there exists a subset B of M such that M =

∑
b∈B Rb and if λb for b ∈ B

are elements of R satisfying
∑

b∈B λbb = 0, then λb = 0 for all b ∈ B.

index: The index of a subgroupH in a group G is the cardinality of G/H ,
the set of cosets of H in G.

involution: A group element of order 2.

Klein Four group: The group (Z/2Z)×(Z/2Z). In other words, the only
non-cyclic group of order four.

linear: A group G is linear if it is isomorphic to a subgroup of GL(V ) for
some finite-dimensional vector space V . If so, and the underlying field of the
vector space is the reals, then we say that G is linear over the reals.

monoid: A set M supplied with a distinguished element 1 and a binary
map M ×M → M , referred to a multiplication, is called a monoid if the
binary map is associative and both left and right multiplication by 1 is the
identity on M . In formulas, with (a, b) 7→ a · b denoting the map, for all
a, b, c ∈M ,
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(a · b) · c = a · (b · c)
1 · b = b · 1 = b

monomial: A matrix is called monomial if each row and each column
contains exactly one nonzero entry.

norm: The norm of a vector in Rn, supplied with the standard inner
product, is its Euclidean length.

normal: A subgroup H of a group G is normal if gHg−1 = H for all
g ∈ G. Here gHg−1 stands for the subset {ghg−1 | h ∈ H} of G, which is a
subgroup of G, conjugate to H .

normalizer: Let S be a subset of a group G, then the subgroup NG(S) =
{g ∈ G | gSg−1 = S} of G is the normalizer of S in G.

quotient group: Let N be a normal subgroup of a group G. Then the
quotient group of G by N is denoted G/N . It is the set of all left cosets of
N in G, that is, G/N = {gN | g ∈ G}. For each gN and hN in G/N , the
product of gN and hN is (gN)(hN) = ghN .

simple: A group is simple if its only normal subgroups are the group itself
and the trivial group.
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